May 7, 2024
The first-principles phase diagram of monolayer nanoconfined water – Nature

The first-principles phase diagram of monolayer nanoconfined water – Nature

  • Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kavokine, N., Bocquet, M.-L. & Bocquet, L. Fluctuation-induced quantum friction in nanoscale water flows. Nature 602, 84–90 (2022).

  • Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Niguès, A., Siria, A., Vincent, P., Poncharal, P. & Bocquet, L. Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nat. Mater. 13, 688–693 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Zhu, Y., Wang, F. & Wu, H. Superheating of monolayer ice in graphene nanocapillaries. J. Chem. Phys. 146, 134703 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Li, S. & Schmidt, B. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions. Phys. Chem. Chem. Phys. 21, 17640–17654 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Jiang, J. et al. First-principles molecular dynamics simulations of the spontaneous freezing transition of 2D water in a nanoslit. J. Am. Chem. Soc. 143, 8177–8183 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zen, A. et al. Fast and accurate quantum Monte Carlo for molecular crystals. Proc. Natl Acad. Sci. USA 115, 1724–1729 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Schran, C. et al. Machine learning potentials for complex aqueous systems made simple. Proc. Natl Acad. Sci. USA 118, e2110077118 (2021).

  • Corsetti, F., Matthews, P. & Artacho, E. Structural and configurational properties of nanoconfined monolayer ice from first principles. Sci. Rep. 6, 18651 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chen, J., Schusteritsch, G., Pickard, C. J., Salzmann, C. G. & Michaelides, A. Two dimensional ice from first principles: structures and phase transitions. Phys. Rev. Lett. 116, 025501 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Björkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Zamborlini, G. et al. Nanobubbles at GPa pressure under graphene. Nano Lett. 15, 6162–6169 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chen, J., Zen, A., Brandenburg, J. G., Alfè, D. & Michaelides, A. Evidence for stable square ice from quantum Monte Carlo. Phys. Rev. B 94, 220102 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Kapil, V. & Engel, E. A. A complete description of thermodynamic stabilities of molecular crystals. Proc. Natl Acad. Sci. USA 119, e2111769119 (2022).

  • Ferguson, A. L., Giovambattista, N., Rossky, P. J., Panagiotopoulos, A. Z. & Debenedetti, P. G. A computational investigation of the phase behavior and capillary sublimation of water confined between nanoscale hydrophobic plates. J. Chem. Phys. 137, 144501 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6, 1181–1203 (1973).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pickard, C. J. & Needs, R. J. Structure of phase III of solid hydrogen. Nat. Phys. 3, 473–476 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Vilanova, O. & Franzese, G. Structural and dynamical properties of nanoconfined supercooled water. Preprint at arXiv http://arxiv.org/abs/1102.2864 (2011).

  • Muñoz-Santiburcio, D. & Marx, D. Confinement-controlled aqueous chemistry within nanometric slit pores. Chem. Rev. 121, 6293–6320 (2021).

    Article 

    Google Scholar
     

  • Kreuer, K.-D. Proton conductivity: materials and applications. Chem. Mater. 8, 610–641 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Sugimura, E. et al. Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys.s 137, 194505 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Cheng, B., Engel, E. A., Behler, J., Dellago, C. & Ceriotti, M. Ab initio thermodynamics of liquid and solid water. Proc. Natl Acad. Sci. 116, 1110–1115 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Behler, J. Four generations of high-dimensional neural network potentials. Chem. Rev. https://doi.org/10.1021/acs.chemrev.0c00868 (2021).

  • Schran, C., Brezina, K. & Marsalek, O. Committee neural network potentials control generalization errors and enable active learning. J. Chem. Phys. 153, 104105 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Conde, M. M., Gonzalez, M. A., Abascal, J. L. F. & Vega, C. Determining the phase diagram of water from direct coexistence simulations: the phase diagram of the TIP4P/2005 model revisited. J. Chem. Phys. 139, 154505 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kapil, V. et al. Universal Force Engine For Advanced Molecular Simulations.Comput. Phys. Commun. 236, 214–223 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Singraber, A., Behler, J. & Dellago, C. Library-based LAMMPS implementation of high-dimensional neural network potentials. J. Chem. Theory Comput. 15, 1827–1840 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Larsen, A. H.et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

  • Grasselli, F. & Baroni, S. Topological quantization and gauge invariance of charge transport in liquid insulators. Nat. Phys. 15, 967–972 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Marsalek, O. & Markland, T. E. Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett. 8, 1545–1551 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Needs, R. J., Towler, M. D., Drummond, N. D. & Rios, P. L. Continuum variational and diffusion quantum Monte Carlo calculations. J. Phys. Condens. Matter 22, 023201 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mitas, L., Shirley, E. L. & Ceperley, D. M. Nonlocal pseudopotentials and diffusion Monte Carlo. J. Chem. Phys. 95, 3467 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Brandenburg, J. G. et al. Physisorption of water on graphene: subchemical accuracy from many-body electronic structure methods. J. Phys. Chem. Lett. 10, 358–368 (2019).

    Article 

    Google Scholar
     

  • Source link