May 27, 2024

The Montreal Protocol protects the terrestrial carbon sink – Nature

  • 1.

    World Meteorological Organization. Scientific Assessment of Ozone Depletion: 2018. Report No. 58 (Global Ozone and Research Monitoring Project, 2018).

  • 2.

    van Dijk, A. et al. Skin cancer risks avoided by the Montreal Protocol—worldwide modeling integrating coupled climate‐chemistry models with a risk model for UV. Photochem. Photobiol. 89, 234–246 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    McKenzie, R. et al. Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with ‘World Avoided’ calculations from two chemistry-climate models. Sci. Rep. 9, 12332 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Ramanathan, V. Greenhouse effect due to chlorofluorocarbons: climatic implications. Science 190, 50–52 (1975).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Morgenstern, O. et al. The world avoided by the Montreal Protocol. Geophys. Res. Lett. 35, L16811 (2008).

    ADS 

    Google Scholar
     

  • 6.

    Newman, P. A. et al. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmos. Chem. Phys. 9, 2113–2128 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Garcia, R. R., Kinnison, D. E. & Marsh, D. R. ‘World avoided’ simulations with the Whole Atmosphere Community Climate Model. J. Geophys. Res. 117, D23303 (2012).

    ADS 

    Google Scholar
     

  • 8.

    Ballaré, C. L., Caldwell, M. M., Flint, S. D., Robinson, S. A. & Bornman, J. F. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem. Photobiol. Sci. 10, 226–241 (2011).


    Google Scholar
     

  • 9.

    Newsham, K. K. & Robinson, S. A. Responses of plants in polar regions to UVB exposure: a meta-analysis. Glob. Change Biol. 15, 2574–2589 (2009).

    ADS 

    Google Scholar
     

  • 10.

    Li, F.-R., Peng, S.-L., Chen, B.-M. & Hou, Y.-P. A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecol. 36, 1–9 (2010).

    ADS 

    Google Scholar
     

  • 11.

    Searles, P. S., Flint, S. D. & Caldwell, M. M. A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127, 1–10 (2001).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Fu, G. & Shen, Z.-X. Effects of enhanced UV-B radiation on plant physiology and growth on the Tibetan Plateau: a meta-analysis. Acta Physiol. Plant. 39, 85 (2017).


    Google Scholar
     

  • 13.

    Lucas, R. M. et al. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 18, 641–680 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Bornman, J. F. et al. Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems. Photochem. Photobiol. Sci. 18, 681–716 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Williamson, C. E. et al. The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems. Photochem. Photobiol. Sci. 18, 717–746 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Molina, M. J. & Rowland, F. S. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249, 810–812 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Solomon, S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275–316 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Velders, G. J. M., Andersen, S. O., Daniel, J. S., Fahey, D. W. & McFarland, M. The importance of the Montreal Protocol in protecting climate. Proc. Natl Acad. Sci. USA 104, 4814–4819 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Prather, M., Midgley, P., Rowland, F. S. & Stolarski, R. The ozone layer: the road not taken. Nature 381, 551–554 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Wu, Y., Polvani, L. M. & Seager, R. The importance of the Montreal Protocol in protecting Earth’s hydroclimate. J. Clim. 26, 4049–4068 (2013).

    ADS 

    Google Scholar
     

  • 22.

    Polvani, L. M., Camargo, S. J. & Garcia, R. R. The importance of the Montreal Protocol in mitigating the potential intensity of tropical cyclones. J. Clim. 29, 2275–2289 (2016).

    ADS 

    Google Scholar
     

  • 23.

    Previdi, M. & Polvani, L. M. Impact of the Montreal Protocol on Antarctic surface mass balance and implications for global sea level rise. J. Clim. 30, 7247–7253 (2017).

    ADS 

    Google Scholar
     

  • 24.

    Chipperfield, M. P. et al. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun. 6, 7233 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Newman, P. A. & McKenzie, R. UV impacts avoided by the Montreal Protocol. Photochem. Photobiol. Sci. 10, 1152–1160 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Neugart, S. & Schreiner, M. UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hortic. 234, 370–381 (2018).

    CAS 

    Google Scholar
     

  • 27.

    Fiscus, E. L. & Booker, F. L. Is increased UV-B a threat to crop photosynthesis and productivity? Photosynth. Res. 43, 81–92 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Morgenstern, O. et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671 (2017).

    ADS 

    Google Scholar
     

  • 29.

    Best, M. J. et al. The Joint UK Land Environment Simulator (JULES), model description–part 1: energy and water fluxes. Geosci. Model Dev. 4, 677–699 (2011).

    ADS 

    Google Scholar
     

  • 30.

    Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description–part 2: carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).

    ADS 

    Google Scholar
     

  • 31.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    ADS 

    Google Scholar
     

  • 32.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Collins, M. et al. in Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013).

  • 34.

    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000); erratum 408, 750 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Caldwell, M. M. in Photophysiology, Current Topics in Photobiology and Photochemistry Vol. VI (ed. Giese, A. C.) 131–177 (Academic Press, 1971).

  • 37.

    Caldwell, M. M., Camp, L. B., Warner, C. W. & Flint, S. D. in Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life Vol. 8 (eds Worrest, R. C. & Caldwell, M. M.) 87–111 (Springer, 1986).

  • 38.

    Calbó, J., Pagès, D. & González, J. Empirical studies of cloud effects on UV radiation: a review. Rev. Geophys. 43, RG2002 (2005).

    ADS 

    Google Scholar
     

  • 39.

    Arora, V. K. et al. Carbon–concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).

    ADS 

    Google Scholar
     

  • 40.

    Williamson, C. E. et al. Solar ultraviolet radiation in a changing climate. Nat. Clim. Chang. 4, 434–441 (2014).

    ADS 

    Google Scholar
     

  • 41.

    Rigby, M. et al. Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature 569, 546–550 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Tilmes, S., Garcia, R. R., Kinnison, D. E., Gettelman, A. & Rasch, P. J. Impact of geoengineered aerosols on the troposphere and stratosphere. J. Geophys. Res. 114, D12305 (2009).

    ADS 

    Google Scholar
     

  • 43.

    NASA. Ozone Watch https://ozonewatch.gsfc.nasa.gov/meteorology/annual_data.html (2019).

  • 44.

    Morgenstern, O. et al. Evaluation of the new UKCA climate-composition model – part 1: the stratosphere. Geosci. Model Dev. 2, 43–57 (2009).

    ADS 

    Google Scholar
     

  • 45.

    Hewitt, H. T. et al. Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci. Model Dev. 4, 223–253 (2011).

    ADS 

    Google Scholar
     

  • 46.

    World Meteorological Organization. Scientific Assessment of Ozone Depletion: 2010. Report No. 52 (Global Ozone Research and Monitoring Project, 2011).

  • 47.

    Morgenstern, O. et al. Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations. Atmos. Chem. Phys. 18, 1091–1114 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Edwards, J. M. & Slingo, A. Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122, 689–719 (1996).

    ADS 

    Google Scholar
     

  • 49.

    Forster, P. M. et al. Evaluation of radiation scheme performance within chemistry climate models. J. Geophys. Res. 116, D10302 (2011).

    ADS 

    Google Scholar
     

  • 50.

    Lauer, A. & Hamilton, K. Simulating clouds with global climate models: a comparison of CMIP5 results with CMIP3 and satellite data. J. Clim. 26, 3823–3845 (2013).

    ADS 

    Google Scholar
     

  • 51.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    ADS 

    Google Scholar
     

  • 52.

    Flint, S. D. & Caldwell, M. M. A biological spectral weighting function for ozone depletion research with higher plants. Physiol. Plant. 117, 137–144 (2003).

    CAS 

    Google Scholar
     

  • 53.

    Kotilainen, T., Lindfors, A., Tegelberg, R. & Aphalo, P. J. How realistically does outdoor UV-B supplementation with lamps reflect ozone depletion: an assessment of enhancement errors. Photochem. Photobiol. 87, 174–183 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Flint, S. D., Ryel, R. J. & Caldwell, M. M. Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies. Agric. For. Meteorol. 120, 177–189 (2003).

    ADS 

    Google Scholar
     

  • 55.

    Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 8, 2315–2328 (2015).

    ADS 

    Google Scholar
     

  • 56.

    Harper, A. B. et al. Improved representation of plant functional types and physiology in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait information. Geosci. Model Dev. 9, 2415–2440 (2016).

    ADS 

    Google Scholar
     

  • 57.

    Harper, A. B. et al. Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types. Geosci. Model Dev. 11, 2857–2873 (2018).

    ADS 

    Google Scholar
     

  • 58.

    Huntingford, C. & Cox, P. M. An analogue model to derive additional climate change scenarios from existing GCM simulations. Clim. Dyn. 16, 575–586 (2000).


    Google Scholar
     

  • 59.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Huntingford, C. et al. Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theor. Appl. Climatol. 78, 177–185 (2004).

    ADS 

    Google Scholar
     

  • 61.

    Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    ADS 

    Google Scholar
     

  • Source link