May 5, 2024
The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST – Nature

The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST – Nature

  • Robertson, B. E., Ellis, R. S., Furlanetto, S. R. & Dunlop, J. S. Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble Space Telescope. Astrophys. J. Lett. 802, L19 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Stark, D. P. Galaxies in the first billion years after the Big Bang. Annu. Rev. Astron. Astrophys. 54, 761–803 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zitrin, A. et al. A geometrically supported z ~ 10 candidate multiply imaged by the Hubble Frontier Fields cluster A2744. Astrophys. J. Lett. 793, L12 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bergamini, P. et al. New high-precision strong lensing modeling of Abell 2744. Preparing for JWST observations. Astron. Astrophys. 670, A60 (2023).

  • Mason, C. A. et al. Inferences on the timeline of reionization at z ~ 8 from the KMOS Lens-Amplified Spectroscopic Survey. Mon. Not. R. Astron. Soc. 485, 3947–3969 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shapley, A. E., Steidel, C. C., Pettini, M. & Adelberger, K. L. Rest-frame ultraviolet spectra of z ~ 3 Lyman break galaxies. Astrophys. J. 588, 65–89 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Stark, D. P. et al. Lyα and C III] emission in z = 7-9 galaxies: accelerated reionization around luminous star-forming systems? Mon. Not. R. Astron. Soc. 464, 469–479 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, L. et al. Evidence for GN-z11 as a luminous galaxy at redshift 10.957. Nat. Astron. 5, 256–261 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Williams, H. et al. Spectroscopy from Lyman alpha to [O iii] 5007 of a triply imaged magnified galaxy at redshift z = 9.5. Preprint at https://doi.org/10.48550/arXiv.2210.15699 (2022).

  • Bouwens, R. J. et al. UV luminosity functions at redshifts z ~ 4 to z ~ 10: 10,000 galaxies from HST Legacy Fields. Astrophys. J. 803, 34 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Labbé, I. & Stefanon, M. The dearth of z ~ 10 galaxies in all HST Legacy Fields – the rapid evolution of the galaxy population in the first 500 Myr. Astrophys. J. 855, 105 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Oesch, P. A. et al. A remarkably luminous galaxy at z = 11.1 measured with Hubble Space Telescope grism spectroscopy. Astrophys. J. 819, 129 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hashimoto, T. et al. The onset of star formation 250 million years after the Big Bang. Nature 557, 392–395 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Finkelstein, S. L. et al. A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51. Nature 502, 524–527 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oesch, P. A. et al. A spectroscopic redshift measurement for a luminous Lyman break galaxy at z = 7.730 using Keck/MOSFIRE. Astrophys. J. Lett. 804, L30 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Watson, D. et al. A dusty, normal galaxy in the epoch of reionization. Nature 519, 327–330 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zitrin, A. et al. Lymanα emission from a luminous z = 8.68 galaxy: implications for galaxies as tracers of cosmic reionization. Astrophys. J. Lett. 810, L12 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hoag, A. et al. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization. Nat. Astron. 1, 0091 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Laporte, N. et al. Dust in the reionization era: ALMA observations of a z = 8.38 gravitationally lensed galaxy. Astrophys. J. Lett. 837, L21 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tamura, Y. et al. Detection of the far-infrared [O iii] and dust emission in a galaxy at redshift 8.312: early metal enrichment in the heart of the reionization era. Astrophys. J. 874, 27 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bouwens, R. J. et al. Reionization Era Bright Emission Line Survey: selection and characterization of luminous interstellar medium reservoirs in the z > 6.5 Universe. Astrophys. J. 931, 160 (2022).

  • Laporte, N. et al. Probing cosmic dawn: ages and star formation histories of candidate z 9 galaxies. Mon. Not. R. Astron. Soc. 505, 3336–3346 (2021).

  • Topping, M. W. et al. The detection of ionized carbon emission at z ~ 8. Astrophys. J. Lett. 917, L36 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roberts-Borsani, G. et al. Early results from GLASS-JWST. I: confirmation of lensed z 7 Lyman-break galaxies behind the Abell 2744 cluster with NIRISS. Astrophys. J. Lett. 938, L13 (2022).

  • Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Merlin, E. et al. Early results from GLASS-JWST. II. NIRCam extragalactic imaging and photometric catalog. Astrophys. J. Lett. 938, L14 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117, 393–404 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Bertin, E. SWarp: resampling and co-adding FITS images together. Astrophysics Source Code Library record ascl:1010.068 (2010).

  • Bertin, E. Automatic astrometric and photometric calibration with SCAMP. In Astronomical Data Analysis Software and Systems XV, Vol. 351 of Astronomical Society of the Pacific Conference Series (eds Gabriel. C. et al.) 112–115 (2006).

  • Merlin, E. et al. A-PHOT: a new, versatile code for precision aperture photometry. Astron. Astrophys. 622, A169 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Jullo, E. et al. A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 9, 447 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Merten, J. et al. Creation of cosmic structure in the complex galaxy cluster merger Abell 2744. Mon. Not. R. Astron. Soc. 417, 333–347 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Morishita, T. et al. Massive dead galaxies at z ~ 2 with HST grism spectroscopy. I. Star formation histories and metallicity enrichment. Astrophys. J. 877, 141 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC Hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Vanzella, E. et al. Early results from GLASS-JWST. VII: evidence for lensed, gravitationally bound proto-globular clusters at z = 4 in the Hubble Frontier Field A2744. Astrophys. J. Lett. 940, L53 (2022).

  • Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Yang, L., Birrer, S. & Treu, T. A versatile tool for cluster lensing source reconstruction – I. Methodology and illustration on sources in the Hubble Frontier Field Cluster MACS J0717.5+3745. Mon. Not. R. Astron. Soc. 496, 2648–2662 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Groves, B., Brinchmann, J. & Walcher, C. J. The Balmer decrement of Sloan Digital Sky Survey galaxies. Mon. Not. R. Astron. Soc. 419, 1402–1412 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Brinchmann, J., Kunth, D. & Durret, F. Galaxies with Wolf–Rayet signatures in the low-redshift Universe. A survey using the Sloan Digital Sky Survey. Astron. Astrophys. 485, 657 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miralles-Caballero, D. et al. First survey of Wolf–Rayet star populations over the full extension of nearby galaxies observed with CALIFA. Astron. Astrophys. 592, A105 (2016).

    Article 

    Google Scholar
     

  • Liang, F.-H. et al. Wolf–Rayet Galaxies in SDSS-IV MaNGA. I. Catalog construction and sample properties. Astrophys. J. 896, 121 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crowther, P. A. Physical properties of Wolf–Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crowther, P. A. & Hadfield, L. J. Reduced Wolf–Rayet line luminosities at low metallicity. Astron. Astrophys. 449, 711 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Crowther, P. A. Observed metallicity dependence of winds from WR stars. Stellar Evolution at Low Metallicity: Mass Loss, Explosions, Cosmology ASP Conference Series 353, 157 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Feltre, A., Charlot, S. & Gutkin, J. Nuclear activity versus star formation: emission-line diagnostics at ultraviolet and optical wavelengths. Mon. Not. R. Astron. Soc. 456, 3354 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link