May 18, 2024

The nightside cloud-top circulation of the atmosphere of Venus – Nature

  • 1.

    Sánchez-Lavega, A., Lebonnois, S., Imamura, T., Read, P. & Luz, D. The atmospheric dynamics of Venus. Space Sci. Rev. 212, 1541–1616 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Schubert, G. et al. Structure and circulation of the Venus atmosphere. J. Geophys. Res. 85, 8007–8025 (1980).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Newman, M. & Leovy, C. Maintenance of strong rotational winds in Venus’ middle atmosphere by thermal tides. Science 257, 647–650 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Horinouchi, T. et al. How waves and turbulence maintain the super-rotation of Venus’ atmosphere. Science 368, 405–409 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Taguchi, M. et al. Longwave Infrared Camera onboard the Venus Climate Orbiter. Adv. Space Res. 40, 861–868 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Bird, M. K. et al. The vertical profile of winds on Titan. Nature 438, 800–802 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Read, P. L. & Lebonnois, S. Superrotation on Venus, on Titan, and elsewhere. Annu. Rev. Earth Planet. Sci. 46, 175–202 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Imamura, T. et al. Superrotation in planetary atmospheres. Space Sci. Rev. 216, 87 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Showman, A., Tan, X. & Parmentier, V. Atmospheric dynamics of hot giant planets and brown dwarfs. Space Sci. Rev. 216, 139 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Tomasko, M. G., Doose, L. R., Smith, P. H. & Odell, A. P. Measurements of the flux of sunlight in the atmosphere of Venus. J. Geophys. Res. 85, 8167–8186 (1980).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Fels, S. B. & Lindzen, R. S. The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn. 6, 149–191 (1974).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Burt Pechmann, J. & Ingersoll, A. P. Thermal tides in the atmosphere of Venus: comparison of model results with observations. J. Atmos. Sci. 41, 3290–3313 (1984).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Baker, N. L. & Leovy, C. B. Zonal winds near Venus’ cloud top level: a model study of the interaction between the zonal mean circulation and the semidiurnal tide. Icarus 69, 202–220 (1987).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Takagi, M. & Matsuda, Y. Effects of thermal tides on the Venus atmospheric superrotation. J. Geophys. Res. 112, D09112 (2007).

    ADS 

    Google Scholar
     

  • 15.

    Ingersoll, A. P. & Orton, G. S. Lateral inhomogeneities in the Venus atmosphere: analysis of thermal infrared maps. Icarus 21, 121–128 (1974).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Schofield, J. T. & Taylor, F. W. Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus. Q. J. R. Meteorol. Soc. 109, 57–80 (1983).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Zasova, L. V., Ignatiev, N., Khatuntsev, I. & Linkin, V. Structure of the Venus atmosphere. Planet. Space Sci. 55, 1712–1728 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Kouyama, T. et al. Global structure of thermal tides in the upper cloud layer of Venus revealed by LIR onboard Akatsuki. Geophys. Res. Lett. 46, 9457–9465 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Ando, H. et al. Local time dependence of the thermal structure in the Venusian equatorial upper atmosphere: comparison of Akatsuki radio occultation measurements and GCM results. J. Geophys. Res. 123, 2270–2280 (2018).

    Article 

    Google Scholar
     

  • 20.

    Peralta, J. et al. Solar migrating atmospheric tides in the winds of the polar region of Venus. Icarus 220, 958–970 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Lebonnois, S. et al. Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res. 115, E06006 (2010).

    ADS 

    Google Scholar
     

  • 22.

    Crisp, D. Radiative forcing of the Venus mesosphere, II: thermal fluxes, cooling rates, and radiative equilibrium temperatures. Icarus 77, 391–413 (1989).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Gierasch, P. J. Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci. 32, 1038–1044 (1975).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Yamamoto, M., Ikeda, K., Takahashi, M. & Horinouchi, T. Solar-locked and geographical atmospheric structures inferred from a Venus general circulation model with radiative transfer. Icarus 321, 232–250 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Imamura, T. & Hashimoto, G. L. Venus cloud formation in the meridional circulation. J. Geophys. Res. Planets 103, 31349–31366 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Imamura, T. & Hashimoto, G. L. Microphysics of Venusian clouds in rising tropical air. J. Atmos. Sci. 58, 3597–3612 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Yamamoto, M. & Takahashi, M. An aerosol transport model based on a two-moment microphysical parameterization in the Venus middle atmosphere: model description and preliminary experiments. J. Geophys. Res. 111, E08002 (2006).

    ADS 

    Google Scholar
     

  • 28.

    Ando, H., Takagi, M., Sugimoto, N., Sagawa, H., Matsuda, Y. Venusian cloud distribution simulated by a general circulation model. J. Geophys. Res. 125, e2019JE006208 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Limaye, S. S. Venus: cloud level circulation during 1982 as determined from Pioneer cloud photopolarimeter images: II. Solar longitude dependent circulation. Icarus 73, 212–226 (1988).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Rossow, W. B., Del Genio, A. D. & Eichler, T. Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci. 47, 2053–2084 (1990).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Hueso, R., Peralta, J., Garate-Lopez, I., Bandos, T. V. & Sánchez-Lavega, A. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus Express. Planet. Space Sci. 113–114, 78–99 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Horinouchi, T. et al. Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki. Earth Planet Space 70, 10 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Takagi, M., Sugimoto, N., Ando, H. & Matsuda, Y. Three-dimensional structures of thermal tides simulated by a Venus GCM. J. Geophys. Res. 123, 335–352 (2018).

    Article 

    Google Scholar
     

  • 34.

    Imamura, T. Momentum balance of the Venusian midlatitude mesosphere. J. Geophys. Res. 102, 6615–6620 (1997).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Lee, Y. J. et al. The radiative forcing variability caused by the changes of the upper cloud vertical structure in the Venus mesosphere. Planet. Space Sci. 113–114, 298–308 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Fukuhara, T. et al. Absolute calibration of brightness temperature of the Venus disk observed by the Longwave Infrared Camera onboard Akatsuki. Earth Planets Space 69, 141 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Fukuhara, T. et al. Large stationary gravity wave in the atmosphere of Venus. Nat. Geosci. 10, 85–88 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Kouyama, T., Imamura, T., Nakamura, M., Satoh, T. & Futaana, Y. Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique. Planet. Space Sci. 60, 207–216 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Khatuntsev, I. V. et al. Cloud level winds from the Venus Express Monitoring Camera imaging. Icarus 226, 140–158 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Limaye, S. S. Venus atmospheric circulation: known and unknown. J. Geophys. Res. 112, E04S09 (2007).

    ADS 

    Google Scholar
     

  • 41.

    Ignatiev, N. I. et al. Altimetry of the Venus cloud tops from the Venus Express observations. J. Geophys. Res. 114, E00B43 (2009).


    Google Scholar
     

  • 42.

    Takagi, M. & Matsuda, Y. Sensitivity of thermal tides in the Venus atmosphere to basic zonal flow and Newtonian cooling. Geophys. Res. Lett. 32, L02203 (2005).

    ADS 

    Google Scholar
     

  • 43.

    Takagi, M. & Matsuda, Y. Dynamical effect of thermal tides in the lower Venus atmosphere. Geophys. Res. Lett. 33, L13102 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Crisp, D. & Titov, D. V. in Venus II (eds Bougher, S. W. et al.) 353–384 (Univ. Arizona Press, 1997).

  • 45.

    Smith, M. D. & Gierasch, P. J. Global-scale winds at the Venus cloud top inferred from cloud streak orientations. Icarus 123, 313–323 (1996).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Walterscheid, R. L. et al. Zonal winds and the angular momentum balance of Venus’ atmosphere within and above the clouds. J. Atmos. Sci. 42, 1982–1990 (1985).

    ADS 
    Article 

    Google Scholar
     

  • 47.

    Sugimoto, N., Takagi, M. & Matsuda, Y. Waves in a Venus general circulation model. Geophys. Res. Lett. 41, 7461–7467 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 48.

    Peralta, J. et al. Morphology and dynamics of Venus’s middle clouds with Akatsuki/IR1. Geophys. Res. Lett. 46, (2019).

  • 49.

    Sánchez-Lavega, A. et al. Variable winds on Venus mapped in three dimensions. Geophys. Res. Lett. 35, L13204 (2008).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 50.

    Knutson, H. A. et al. A map of the day–night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 51.

    Nakamura, M. et al. Akatsuki returns to Venus. Earth Planets Space 68, 75 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 52.

    Sato, T. M. et al. Dayside cloud top structure of Venus retrieved from Akatsuki IR2 observations. Icarus 345, 113682 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Limaye, S. S. et al. Venus looks different from day to night across wavelengths: morphology from Akatsuki multispectral images. Earth Planets Space 70, 24 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Machado, P. et al. Venus cloud-tracked and Doppler velocimetry winds from CFHT/ESPaDOnS and Venus Express/VIRTIS in April 2014. Icarus 285, 8–26 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 55.

    Gonçalves, R. et al. Venus’ cloud top wind study: coordinated Akatsuki/UVI with cloud tracking and TNG/HARPS-N with Doppler velocimetry observations. Icarus 335, 113418 (2020).

    Article 

    Google Scholar
     

  • 56.

    Murakami, S. et al. Venus Climate Orbiter Akatsuki LIR Longitude-Latitude Map Data v1.0 (JAXA Data Archives and Transmission System, 2018).

  • 57.

    Kouyama, T. et al. Topographical and local time dependence of large stationary gravity waves observed at the cloud top of Venus. Geophys. Res. Lett. 44, 12,098–12,105 (2017).

    Article 

    Google Scholar
     

  • 58.

    Ikegawa, S. & Horinouchi, T. Improved automatic estimation of winds at the cloud top of Venus using superposition of cross-correlation surfaces. Icarus 271, 98–119 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 59.

    Seiff, A., Schofield, J. T., Kliore, A. J., Taylor, F. W. & Limaye, S. S. Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5, 3–58 (1985).

    ADS 
    Article 

    Google Scholar
     

  • 60.

    Imamura, T. et al. Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki. Earth Planets Space 69, 137 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Source link