May 6, 2024
The social value of offsets – Nature

The social value of offsets – Nature

  • Kirschbaum, M. U. F. Temporary carbon sequestration cannot prevent climate change. Mitig. Adapt. Strateg. Glob. Change 11, 1151–1164 (2006).

    Article 

    Google Scholar
     

  • Herzog, H., Caldeira, K. & Reilly, J. An issue of permanence: assessing the effectiveness of temporary carbon storage. Clim. Change 59, 293–310 (2003).

    Article 
    CAS 

    Google Scholar
     

  • van Kooten, G. C. Biological carbon sequestration and carbon trading re-visited. Clim. Change 95, 449–463 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moura Costa, P. & Wilson, C. An equivalence factor between CO avoided emissions and sequestration—description andapplication in forestry. Mitigation Adaptation Strat. Glob. Change 5, 51–60 (2000).

    Article 

    Google Scholar
     

  • Brandão, M., Kirschbaum, M. U. F., Cowie, A. L. & Hjuler, S. V. Quantifying the climate change effects of bioenergy systems: comparison of 15 impact assessment methods. Glob. Change Biol. Bioenergy 11, 727–743 (2019).

    Article 

    Google Scholar
     

  • Bednar, J. et al. Operationalizing the net-negative carbon economy. Nature 596, 377–383 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • IPCC Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the IPCC: Summary for Policymakers (Cambridge Univ. Press, 2022).

  • Groom, B., Palmer, C. & Sileci, L. Carbon emissions reductions from Indonesia’s moratorium on forest concessions are cost-effective yet contribute little to Paris pledges. Proc. Natl Acad. Sci. USA 119, e2102613119 (2022).

  • Badgley, G. et al. Systematic over-crediting in California’s forest carbon offsets program. Glob. Change Biol. https://doi.org/10.1111/gcb.15943 (2021).

  • Calel, R., Colmer, J., Dechezlepretre, A. & Glachant, M. Do carbon offsets offset carbon? CESifo working paper 9368 (2021).

  • West, T. A. P., Borner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cherubini, F., Peters, G. P., Berntsen, T., Stroman, A. H. & Hertwich, E. CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. Glob. Change Biol. Bioenergy 3, 413–426 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kendall, A. Time-adjusted global warming potentials for LCA and carbon footprints. Int. J. Life Cycle Assess. 17, 1042–1049 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Joos, F. et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13, 2793–2825 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Geoffroy, O. et al. Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Clim. 26, 1841–1857 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Watson, R. T. et al. Land Use, Land-Use Change and Forestry (Cambridge Univ. Press, 2000).

  • Energy Transitions Commission. Mind the Gap: How Carbon Dioxide Removals Must Complement Deep Decarbonisation to Keep 1.5 °C Alive (Energy Transitions Commission, 2022).

  • Dietz, S. & Venmans, F. The endowment effect, discounting and the environment. J. Environ. Econ. Manag. 97, 67–91 (2019).

    Article 

    Google Scholar
     

  • Zickfeld, K., MacDougall, A. H. & Matthews, H. D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ. Res. Lett. 11 (2016).

  • Howard, P. H. & Sterner, T. Few and not so far between: a meta-analysis of climate damage estimates. Environ. Resour. Econ. 68, 197–225 (2017).

    Article 

    Google Scholar
     

  • Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Korhonen, R., Pingoud, K., Savolainen, I. & Matthews, R. The role of carbon sequestration and the tonne-year approach in fulfilling the objective of climate convention. Environ. Sci. Policy 5, 429–441 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fearnside, P. M., Lashof, D. & Moura-Costa, P. Accounting for time in mitigating global warming through land-use change and forestry. Mitig. Adapt. Strateg. Glob. Change 5, 239–270 (2000).

    Article 

    Google Scholar
     

  • Aldy, J. E., Kotchen, M. J., Stavins, R. N. & Stock, J. H. Keep climate policy focused on the social cost of carbon. Science 373, 850–852 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nordhaus, W. D. Revisiting the social cost of carbon. Proc. Natl Acad. Sci. USA 114, 1518–1523 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • Golosov, M., Hassler, J., Krusell, P. & Tsyvinski, A. Optimal taxes on fossil fuel in general equilibrium. Econometrica 82, 41–88 (2014).

    Article 
    MathSciNet 

    Google Scholar
     

  • Traeger, C. Ace—Analytic Climate Economy (CESIFO, 2021).

  • Badgley, G. et al. California’s forest carbon offsets buffer pool is severely undercapitalized. Front. For. Glob. Change 5, 1–28 (2022).

  • Buffer Guidelines (FCPF, 2020).

  • Meschi, P.-X. & Metais, E. Too big to learn: the effects of major acquisition failures on subsequent acquisition divestment. Br. J. Manag. 26, 408–423 (2015).

    Article 

    Google Scholar
     

  • Bekaert, G., Harvey, C. R., Lundblad, C. T. & Siegel, S. Political risk and international valuation. J. Corp. Finance 37, 1–23 (2016).

    Article 

    Google Scholar
     

  • Simonet, G. et al. REDD+ Projects in 2014: an Overview Based on a New Database and Typology (Information and Debate Series 32.2.1, Les Cahiers de la Chaire Economie du Climat Information, Paris-Dauphine University, 2015).

  • Guizar-Coutino, A., Jones, J. P., Balmford, A., Carmenta, R. & Coomes, D. A. A global evaluation of the effectiveness of voluntary REDD+ projects at reducing deforestation and degradation in the moist tropics. Conserv. Biol. https://doi.org/10.1111/cobi.13970 (2022).

  • Cames, M. et al. How Additional Is the Clean Development Mechanism? Analysis of the Application of Current Tools and Proposed Alternatives (DG Clima, 2016).

  • Source link