May 30, 2024
Thermal imaging of dust hiding the black hole in NGC 1068 – Nature

Thermal imaging of dust hiding the black hole in NGC 1068 – Nature

  • Antonucci, R. Unified models for active galactic nuclei and quasars. Ann. Rev. Astron. Astrophys. 31, 473–521 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • López-Gonzaga, N. & Jaffe, W. Mid-infrared interferometry of Seyfert galaxies: challenging the standard model. Astron. Astrophys. 591, A128 (2016).

    ADS 

    Google Scholar
     

  • Asmus, D., Hönig, S. F. & Gandhi, P. The subarcsecond mid-infrared view of local active galactic nuclei. III. Polar dust emission. Astrophys. J. 822, 109–121 (2016).

    ADS 

    Google Scholar
     

  • GRAVITY Collaboration. An image of the dust sublimation region in the nucleus of NGC 1068. Astron. Astrophys. 634, A1 (2020).


    Google Scholar
     

  • Seyfert, C. K. Nuclear emission in spiral nebulae. Astrophys. J. 97, 28–40 (1943).

    ADS 
    CAS 

    Google Scholar
     

  • Antonucci, R. R. J. & Miller, J. S. Spectropolarimetry and the nature of NGC 1068. Astrophys. J. 297, 621–632 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • Vermot, P. et al. The hot dust in the heart of NGC 1068’s torus: a 3D radiative model constrained with GRAVITY/VLTi. Astron. Astrophys. 652, A65 (2021).


    Google Scholar
     

  • Prieto, A., Nadolny, J., Fernández-Ontiveros, J. A. & Mezcua, M. Dust in the central parsecs of unobscured AGN: more challenges to the torus. Mon. Not. R. Astron. Soc. 506, 562–580 (2020).

    ADS 

    Google Scholar
     

  • Hönig, S. F. Redefining the torus: a unifying view of AGNs in the infrared and submillimetre. Astrophys. J. 884, 171 (2019).

    ADS 

    Google Scholar
     

  • Barvainis, R. Hot dust and the near-infrared bump in the continuum spectra of quasars and active galactic nuclei. Astrophys. J. 320, 537–544 (1987).

    ADS 

    Google Scholar
     

  • Baskin, A. & Laor, A. Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei. Mon. Not. R. Astron. Soc. 474, 1970–1994 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Jaffe, W. et al. The central dusty torus in the active nucleus of NGC 1068. Nature 429, 47–49 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Raban, D., Jaffe, W., Röttgering, H., Meisenheimer, K. & Tristram, K. R. W. W. Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust. Mon. Not. R. Astron. Soc. 394, 1325–1337 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • López-Gonzaga, N., Jaffe, W., Burtscher, L., Tristram, K. R. W. & Meisenheimer, K. Revealing the large nuclear dust structures in NGC 1068 with MIDI/VLTI. Astron. Astrophys. 565, A71 (2014).

    ADS 

    Google Scholar
     

  • Lopez, B. et al. MATISSE, the VLTI mid-infrared imaging spectro-interferometer. Preprint at https://arxiv.org/abs/2110.15556 (2021).

  • Hofmann, K.-H., Weigelt, G. & Schertl, D. An image reconstruction method (IRBis) for optical/infrared interferometry. Astron. Astrophys. 565, A48 (2014).


    Google Scholar
     

  • Thiébaut, E. In Proc. SPIE 7013: Optical and Infrared Interferometry (eds Schöller, M. et al.) 70131I (SPIE, 2008).

  • Högbom, J. A. Aperture synthesis with a non-regular distribution of interferometer baselines. Astron. Astrophys. Suppl. Ser. 15, 417–426 (1974).

    ADS 

    Google Scholar
     

  • Nenkova, M., Sirocky, M. M., Ivezić, Z. & Elitzur, M. AGN dusty tori. I. Handling of clumpy media. Astrophys. J. 685, 147–159 (2008).

    ADS 

    Google Scholar
     

  • Fritz, T. K. et al. Line derived infrared extinction toward the Galactic center. Astrophys. J. 737, 73 (2011).

    ADS 

    Google Scholar
     

  • Min, M., Hovenier, J. W. & de Koter, A. Modelling optical properties of cosmic dust grains using a distribution of hollow spheres. Astron. Astrophys. 432, 909–920 (2005).

    ADS 

    Google Scholar
     

  • Impellizzeri, C. M. V. et al. Counter-rotation and high-velocity outflow in the parsec-scale molecular torus of NGC 1068. Astrophys. J. Lett. 884, L28–L33 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Greenhill, L. J., Gwinn, C. R., Antonucci, R. & Barvainis, R. VLBI imaging of water maser emission from the nuclear torus of NGC 1068. Astrophys. J. 472, L21–L24 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Gallimore, J. F., Baum, S. A. & O’Dea, C. P. The parsec-scale radio structure of NGC 1068 and the nature of the nuclear radio source. Astrophys. J. 613, 794–810 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Das, V., Crenshaw, D. M., Kraemer, S. B. & Deo, R. P. Kinematics of the narrow-line region in the Seyfert 2 galaxy NGC 1068: dynamical effects of the radio jet. Astron. J. 132, 620–632 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Poncelet, A., Sol, H. & Perrin, G. Dynamics of the ionization bicone of NGC 1068 probed in mid-infrared with VISIR. Astron. Astrophys. 481, 305–317 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • García-Burillo, S. et al. ALMA images the many faces of the NGC 1068 torus and its surroundings. Astron. Astrophys. 632, A61 (2019).


    Google Scholar
     

  • Evans, I. N. et al. HST Imaging of the inner 3 arcseconds of NGC 1068 in the light of [O III] lambda 5007. Astrophys. J. 369, L27 (1991).

  • Gallimore, J. F., Baum, S. A., O’Dea, C. P. & Pedlar, A. The subarcsecond radio structure in NGC 1068. I. Observations and results. Astrophys. J. 458, 136 (1996).

  • Kishimoto, M. The location of the nucleus of NGC 1068 and the three-dimensional structure of its nuclear region. Astrophys. J. 518, 676–692 (1999).

    ADS 

    Google Scholar
     

  • Antonucci, R., Hurt, T. & Miller, J. HST ultraviolet spectropolarimetry of NGC 1068. Astrophys. J. 430, 210 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Leinert, C. et al. MIDI – the 10 µm instrument on the VLTI. Astrophys. Space Sci. 286, 73–83 (2003).

    ADS 

    Google Scholar
     

  • Cruzalèbes, P. et al. A catalogue of stellar diameters and fluxes for mid-infrared interferometry. Mon. Not. R. Astron. Soc. 490, 3158–3176 (2019).

    ADS 

    Google Scholar
     

  • Burtscher, L., Tristram, K. R. W., Jaffe, W. J. & Meisenheimer, K. In Proc. SPIE 8445: Optical and Infrared Interferometry III (eds Delplancke, F. et al.) 494–506 (SPIE, 2012).

  • Jaffe, W. J. In Proc. SPIE 5491: New Frontiers in Stellar Interferometry (ed. Traub, W. A.) 715–724 (SPIE, 2004).

  • Millour, F. et al. In Proc. SPIE 5491: New Frontiers in Stellar Interferometry (ed. Traub, W. A.) 1222–1230 (SPIE, 2004).

  • Cohen, M. et al. Spectral irradiance calibration in the infrared. X. A self-consistent radiometric all-sky network of absolutely calibrated stellar spectra. Astron. J. 117, 1864–1889 (1999).

    ADS 

    Google Scholar
     

  • Petrov, R. G. et al. Commissioning MATISSE: operation and performances. Proc. SPIE 11446: Optical and Infrared Interferometry and Imaging VII (eds Tuthill, P. G. et al.) 124–142 (SPIE, 2020).

  • Bourges, L. et al. JMMC stellar diameters catalogue – JSDC. Version 2. VizieR Online Data Catalog https://cdsarc.cds.unistra.fr/viz-bin/cat/II/346 (2017).

  • Meilland, A. et al. The binary Be star δ Scorpii at high spectral and spatial resolution. I. Disk geometry and kinematics before the 2011 periastron. Astron. Astrophys. 532, A80 (2011).


    Google Scholar
     

  • Leftley, J. H. et al. Resolving the hot dust disk of ESO323-G77. Astrophys. J. 912, 92 (2021).


    Google Scholar
     

  • Lawson, P. R. et al. In Proc. SPIE 5491: Frontiers in Stellar Interferometry (ed. Traub, W. A.) 886–899 (SPIE, 2004).

  • Cotton, W. et al. In Proc. SPIE 7013: Optical and Infrared Interferometry (eds Schöller, M. et al.) 531–544 (SPIE, 2008).

  • Baron, F. et al. In Proc. SPIE 8445: Optical and Infrared Interferometry III (eds Delplancke, F. et al.) 470–483 (SPIE, 2012).

  • Sanchez-Bermudez, J. et al. In Proc. SPIE 9907: Optical and Infrared Interferometry V (eds Melbet, F. et al.) 372–389 (SPIE, 2016).

  • Hager, W. W. & Park, S. Global convergence of SSM for minimizing a quadratic over a sphere. Math. Comput. 74, 1413–1423 (2005).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Millour, F. et al. In The 2007 ESO Instrument Calibration Workshop (eds Kaufer, A. & Kerber, F.) 461–470 (Springer, 2008).

  • Lachaume, R. On marginally resolved objects in optical interferometry. Astron. Astrophys. 400, 795–803 (2003).

    ADS 

    Google Scholar
     

  • López-Gonzaga, N., Jaffe, W., Burtscher, L., Tristram, K. R. W. & Meisenheimer, K. Revealing the large nuclear dust structures in NGC 1068 with MIDI/VLTI. Astron. Astrophys. 565, A71 (2014).

    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).

    ADS 

    Google Scholar
     

  • Wells, D. C. In Data Analysis in Astronomy (eds Di Gesù, V. et al.) 195–209 (Springer, 1985).

  • Greisen, E. W. In Acquisition, Processing and Archiving of Astronomical Images (eds Longo, G. & Sedmak, G.) 125–142 (OAC, FORMEZ, 1990).

  • Greisen, E. W. In Information Handling in Astronomy – Historical Vistas (ed. Heck, A.) 109–125 (Kluwer, 2003).

  • Cornwell, T. J. Multiscale CLEAN deconvolution of radio synthesis Images. IEEE J. Sel. Top. Signal Process. 2, 793–801 (2008).

    ADS 

    Google Scholar
     

  • Cotton, W. D., Jaffe, W., Perrin, G. & Woillez, J. Observations of the inner jet in NGC 1068 at 43 GHz. Astron. Astrophys. 477, 517–520 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).

    ADS 
    CAS 

    Google Scholar
     

  • Zasowski, G., et al. Lifting the dusty veil with near- and mid-infrared photometry. II. A large-scale study of the Galactic infrared extinction law. Astrophys J. 707, 510–523 (2009).

    ADS 

    Google Scholar
     

  • Köhler, M. & Li, A. On the anomalous silicate absorption feature of the prototypical Seyfert 2 galaxy NGC1068. Mon. Not. R. Astron. Soc. 406, L6–L10 (2010).

    ADS 

    Google Scholar
     

  • Van Boekel, R., et al. The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks. Nature 432, 479–482 (2004).

    ADS 

    Google Scholar
     

  • Prieto, M. A. et al. The spectral energy distribution of the central parsecs of the nearest AGN. Mon. Not. R. Astron. Soc. 402, 724–744 (2010).

    ADS 

    Google Scholar
     

  • Isbell, J. W. et al. Subarcsecond mid-infrared view of local active galactic nuclei. IV. The L- and M-band imaging atlas. Astrophys. J. 910, 104 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Source link