May 5, 2024

Time-reversal symmetry-breaking charge order in a kagome superconductor – Nature

  • Syôzi, I. Statistics of kagome lattice. Prog. Theor. Phys. 6, 306-308 (1951).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Barz, H. Ternary transition metal phosphides: high-temperature superconductors. Mater. Res. Bull. 15, 1489-1491 (1980).

    CAS 

    Google Scholar
     

  • Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Guguchia, Z. et al. Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet. Nat. Commun. 11, 559 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, J.-X., Pan, S. H. & Hasan, M. Z. Probing topological quantum matter with scanning tunneling microscopy. Nat. Rev. Phys. 3, 249–263 (2021).


    Google Scholar
     

  • Mielke, III, C. et al. Nodeless kagome superconductivity in LaRu3Si2. Phys. Rev. Materials 5, 034803 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • J.-X. Yin, et. al., Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Preprint at http://arxiv.org/abs/2106.01192 (2021).

  • Ortiz, B. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Ortiz, B. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Materials 5, 034801 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Jiang, Y.-X. et al. Discovery of topological charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Shumiya, N. et al. Tunable chiral charge order in kagome superconductor RbV3Sb5. Phys. Rev. B 104, 035131 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the Kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    CAS 

    Google Scholar
     

  • Denner, M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 217601 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Lin, Y.-P. & Nandkishore, R. Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in kagome metals AV3Sb5. Phys. Rev. B 104, 045122 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5. Phys. Rev. Lett. 127, 177001 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Setty, C., Hu, H., Chen, L. & Si, Q. Electron correlations and T-breaking density wave order in a Z2 kagome metal. Preprint at https://arxiv.org/abs/2105.15204 (2021).

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61, 2015–2018 (1988).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Chakravarty, S., Laughlin, R., Morr, D. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001).

    ADS 

    Google Scholar
     

  • Yang, S. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonier, J. E., Brewer, J. H. & Kiefl, R. F. μSR studies of the vortex state in type-II superconductors. Rev. Mod. Phys. 72, 769 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Luke, G. M. et al. Time-reversal symmetry breaking superconductivity in Sr2RuO4. Nature 394, 558-561 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Kenney, E., Ortiz, B., Wang, C., Wilson, S. & Graf, M. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Kubo, R. & Toyabe, T. Magnetic Resonance and Relaxation (North Holland, 1967).

  • Huang, W. et al. Precision search for magnetic order in the pseudogap regime of La2−xSrxCuO4 by muon spin relaxation. Phys. Rev. B 85, 104527 (2012).

    ADS 

    Google Scholar
     

  • Singh, A. D. et al. Time-reversal symmetry breaking and multigap superconductivity in the noncentrosymmetric superconductor La7Ni3. Phys. Rev. B 103, 174502 (2021).

    ADS 

    Google Scholar
     

  • Sedlak, K., Scheuermann, R., Stoykov, A. & Amato, A. GEANT4 simulation and optimisation of the high-field μSR spectrometer. Physica B 404, 970–973 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Preprint at https://arxiv.org/abs/2104.06909 (2021).

  • Zhao, H. et al. Cascade of correlated electron states in a kagome superconductor CsV3Sb5. Preprint at https://arxiv.org/pdf/2103.03118 (2021).

  • Khasanov, R. et al. Evolution of two-gap behavior of the superconductor FeSe1−x. Phys. Rev. Lett. 104, 087004 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Kogan, V. G., Martin, C. & Prozorov, R. Superfluid density and specific heat within a self-consistent scheme for a two-band superconductor. Phys. Rev. B 80, 014507 (2009).

    ADS 

    Google Scholar
     

  • Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. Preprint at https://arxiv.org/abs/2108.01574 (2021).

  • Han-Shu, X. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Preprint at https://arxiv.org/pdf/2104.08810.pdf (2021).

  • Uemura, Y. J. et al. Universal correlations between Tc and ns/m* (carrier density over effective mass) in high-Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • von Rohr, F. O. et al. Unconventional scaling of the superfluid density with the critical temperature in transition metal dichalcogenides. Sci. Adv. 5, eaav8465 (2019).

    ADS 

    Google Scholar
     

  • Shengelaya, A. et al. Muon-spin-rotation measurements of the penetration depth of the infinite-layer electron-doped Sr0.9La0.1CuO2 cuprate superconductor. Phys. Rev. Lett. 94, 127001 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Luetkens, H. et al. The electronic phase diagram of the LaO1−xFxFeAs superconductor. Nat. Mater. 8, 305-309 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amato, A. et al. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam. Rev. Sci. Instrum. 88, 093301 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suter, A. and Wojek, B. M. Musrfit: a free platform-independent framework for μSR data analysis. Phys. Procedia 30, 69 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Kiesel, M. L. & Thomale, R. Sublattice interference in the kagome Hubbard model. Phys. Rev. B 86, 121105 (2012).

    ADS 

    Google Scholar
     

  • Lee, S. L. et al. Evidence for two-dimensional thermal fluctuations of the vortex structure in Bi2.15Sr1.85CaCu2O8 + Δ from muon spin rotation experiments. Phys. Rev. Lett. 75, 922 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guguchia, Z. et al. Signatures of the topological s+− superconducting order parameter in the type-II Weyl semimetal Td-MoTe2. Nat. Commun. 8, 1082 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandt, E. H. Flux distribution and penetration depth measured by muon spin rotation in high-Tc superconductors. Phys. Rev. B 37, 2349 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • Bouquet, F. et al. Phenomenological two-gap model for the specific heat of MgB2. Europhys. Lett. 56, 856 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Prozorov, R. & Giannetta, R. W. Magnetic penetration depth in unconventional superconductors. Supercond. Sci. Technol. 19, R41 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Khasanov, R. et al. Experimental evidence for two gaps in the high-temperature La1.83Sr0.17CuO4 superconductor. Phys. Rev. Lett. 98, 057007 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Khasanov, R. et al. SrPt3P: a two-band single-gap superconductor. Phys. Rev. B 90, 140507(R) (2014).

    ADS 

    Google Scholar
     

  • Kogan, V. G. London approach to anisotropic type-II superconductors. Phys. Rev. B 24, 1572 (1981).

    ADS 

    Google Scholar
     

  • Gupta, R. et al. Self-consistent two-gap approach in studying multi-band superconductivity in NdFeAsO0.65F0.35. Front. Phys. 8, 2 (2020).


    Google Scholar
     

  • Source link