May 16, 2024
Tissue CD14+CD8+ T cells reprogrammed by myeloid cells and modulated by LPS – Nature

Tissue CD14+CD8+ T cells reprogrammed by myeloid cells and modulated by LPS – Nature

  • Crispe, I. N. Immune tolerance in liver disease. Hepatology 60, 2109–2117 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Protzer, U., Maini, M. K. & Knolle, P. A. Living in the liver: hepatic infections. Nat. Rev. Immunol. 12, 201–213 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Macpherson, A. J., Heikenwalder, M. & Ganal-Vonarburg, S. C. The liver at the nexus of host-microbial interactions. Cell Host Microbe 20, 561–571 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wiest, R., Lawson, M. & Geuking, M. Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 60, 197–209 (2014).

    Article 

    Google Scholar
     

  • Tripathi, A. et al. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J. Exp. Med. 214, 1567–1580 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Burel, J. G. et al. Circulating T cell-monocyte complexes are markers of immune perturbations. eLife 8, e46045 (2019).

    Article 

    Google Scholar
     

  • Pallett, L. J. et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. J. Exp. Med. 217, e20200050 (2020).

    Article 

    Google Scholar
     

  • Fernandez-Ruiz, D. et al. Liver-resident memory CD8+ T cells form a front-line defense against malaria liver-stage infection. Immunity 45, 889–902 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Curbishley, S. M., Eksteen, B., Gladue, R. P., Lalor, P. & Adams, D. H. CXCR3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under fluid flow. Am. J. Pathol. 167, 887–899 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Liepelt, A. & Tacke, F. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G203–G209 (2016).

    Article 

    Google Scholar
     

  • Neumann, K. et al. Chemokine transfer by liver sinusoidal endothelial cells contributes to the recruitment of CD4+ T cells into the murine liver. PLoS ONE 10, e0123867 (2015).

    Article 

    Google Scholar
     

  • Mazza, G. et al. Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization. Sci. Rep. 7, 5534 (2017).

    Article 
    ADS 

    Google Scholar
     

  • McQuitty, C. E., Williams, R., Chokshi, S. & Urbani, L. Immunomodulatory role of the extracellular matrix within the liver disease microenvironment. Front. Immunol. 11, 574276 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McNamara, H. A. et al. Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Sci. Immunol. 2, eaaj1996 (2017).

    Article 

    Google Scholar
     

  • Benechet, A. P. et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature 574, 200–205 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • De Simone, G. et al. Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity 54, 2089–2100 (2021).

    Article 

    Google Scholar
     

  • Wei, Y. et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 371, eabb1625 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Baumann, T. et al. Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal. Nat. Immunol. 21, 555–566 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Crispe, I. N. The liver as a lymphoid organ. Annu. Rev. Immunol. 27, 147–163 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Huang, L. R. et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8+ T cells and successful immunotherapy against chronic viral liver infection. Nat. Immunol. 14, 574–583 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pallett, L. J. & Maini, M. K. Liver-resident memory T cells: life in lockdown. Semin. Immunopathol. 44, 813–825 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Legut, M. et al. A genome-scale screen for synthetic drivers of T cell proliferation. Nature 603, 728–735 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Smith, L. K. et al. Interleukin-10 directly inhibits CD8+ T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity 48, 299–312 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fioravanti, J. et al. Effector CD8+ T cell-derived interleukin-10 enhances acute liver immunopathology. J. Hepatol. 67, 543–548 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schurich, A. et al. Dynamic regulation of CD8 T cell tolerance induction by liver sinusoidal endothelial cells. J. Immunol. 184, 4107–4114 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Tan, A. T. et al. Use of expression profiles of HBV-DNA integrated into genomes of hepatocellular carcinoma cells to select T Cells for immunotherapy. Gastroenterology 156, 1862–1876 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Frey, E. A. et al. Soluble CD14 participates in the response of cells to lipopolysaccharide. J. Exp. Med. 176, 1665–1671 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Komai-Koma, M., Gilchrist, D. S. & Xu, D. Direct recognition of LPS by human but not murine CD8+ T cells via TLR4 complex. Eur. J. Immunol. 39, 1564–1572 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Yoshimura, A. et al. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1–5 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Zanoni, I. & Granucci, F. Role of CD14 in host protection against infections and in metabolism regulation. Front. Cell Infect. Microbiol. 3, 32 (2013).

    Article 

    Google Scholar
     

  • Sakai, N. et al. Interleukin-33 is hepatoprotective during liver ischemia/reperfusion in mice. Hepatology 56, 1468–1478 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Taub, R. Hepatoprotection via the IL-6/Stat3 pathway. J. Clin. Invest. 112, 978–980 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Taub, D. D., Anver, M., Oppenheim, J. J., Longo, D. L. & Murphy, W. J. T lymphocyte recruitment by interleukin-8 (IL-8). IL-8-induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vitro and in vivo. J. Clin. Invest. 97, 1931–1941 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Gehring, A. J. et al. Licensing virus-specific T cells to secrete the neutrophil attracting chemokine CXCL-8 during hepatitis B virus infection. PLoS ONE 6, e23330 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Foussat, A. et al. Production of stromal cell-derived factor 1 by mesothelial cells and effects of this chemokine on peritoneal B lymphocytes. Eur. J. Immunol. 31, 350–359 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Albillos, A. et al. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology 37, 208–217 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sierro, F. et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity 47, 374–388 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Motwani, M. P. et al. Pro-resolving mediators promote resolution in a human skin model of UV-killed Escherichia coli-driven acute inflammation. JCI Insight 3, e94463 (2018).

    Article 

    Google Scholar
     

  • Nowarski, R., Jackson, R. & Flavell, R. A. The stromal intervention: regulation of immunity and inflammation at the epithelial-mesenchymal barrier. Cell 168, 362–375 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krausgruber, T. et al. Structural cells are key regulators of organ-specific immune responses. Nature 583, 296–302 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bonnardel, J. et al. Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638–654 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Zanin-Zhorov, A. et al. Cutting edge: T cells respond to lipopolysaccharide innately via TLR4 signaling. J. Immunol. 179, 41–44 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48, 322–335 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kucykowicz, S. et al. Isolation of human intrahepatic leukocytes for phenotypic and functional characterization by flow cytometry. STAR Protoc. 3, 101356 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cossarizza, A. et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur. J. Immunol. 51, 2708–3145 (2021).

  • Singh, H. D. et al. TRAIL regulatory receptors constrain human hepatic stellate cell apoptosis. Sci Rep. 7, 5514 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Daubeuf, S., Puaux, A. L., Joly, E. & Hudrisier, D. A simple trogocytosis-based method to detect, quantify, characterize and purify antigen-specific live lymphocytes by flow cytometry, via their capture of membrane fragments from antigen-presenting cells. Nat. Protoc. 1, 2536–2542 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis Nat. Methods 9, 676–682 (2012).

  • Schwabenland, M. et al. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity 54, 1594–1610 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McAdam, S. et al. Cross-clade recognition of p55 by cytotoxic T lymphocytes in HIV-1 infection. Aids 12, 571–579 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Popescu, D. M. et al. Decoding human fetal liver haematopoiesis. Nature 574, 365–371 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pavesi, A. et al. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2, e89762 (2017).

    Article 

    Google Scholar
     

  • Source link