May 7, 2024
Topography of mountain belts controlled by rheology and surface processes – Nature

Topography of mountain belts controlled by rheology and surface processes – Nature

  • Beaumont, C., Fullsack, P. & Hamilton, J. in Thrust Tectonics (ed. McClay, K. R.) 1–18 (Springer, 1992).

  • Willett, S. D. Orogeny and orography: the effects of erosion on the structure of mountain belts. J. Geophys. Res. Solid Earth 104, 28957–28981 (1999).

    Article 

    Google Scholar
     

  • Whipple, K. X., Kirby, E. & Brocklehurst, S. H. Geomorphic limits to climate-induced increases in topographic relief. Nature 401, 39–43 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Beaumont, C., Jamieson, R. A., Nguyen, M. H. & Lee, B. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Braun, J. & Willett, S. D. A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution. Geomorphology 180, 170–179 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Yuan, X. P., Braun, J., Guerit, L., Rouby, D. & Cordonnier, G. A new efficient method to solve the stream power law model taking into account sediment deposition. J. Geophys. Res. Earth Surface 124, 1346–1365 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Thieulot, C. FANTOM: two-and three-dimensional numerical modelling of creeping flows for the solution of geological problems. Phys. Earth Planet. Inter. 188, 47–68 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Willett, S. D. & Brandon, M. T. On steady states in mountain belts. Geology 30, 175–178 (2002).

    ADS 
    Article 

    Google Scholar
     

  • Beaumont, C., Nguyen, M. H., Jamieson, R. A. & Ellis, S. Crustal flow modes in large hot orogens. Geol. Soc. Spec. Publ. 268, 91–145 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Whipple, K. X. & Tucker, G. E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 104, 17661–17674 (1999).

    Article 

    Google Scholar
     

  • Dadson, S. J. et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648–651 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koons, P. O. The topographic evolution of collisional mountain belts – a numerical look at the Southern Alps, New Zealand. Am. J. Sci. 289, 1041–1069 (1989).

    ADS 
    Article 

    Google Scholar
     

  • Molnar, P. & England, P. Late Cenozoic uplift of mountain-ranges and global climate change – chicken or egg. Nature 346, 29–34 (1990).

    ADS 
    Article 

    Google Scholar
     

  • Tucker, G. E. & Bras, R. L. A stochastic approach to modeling the role of rainfall variability in drainage basin evolution. Water Resour. Res. 36, 1953–1964 (2000).

    ADS 
    Article 

    Google Scholar
     

  • Hartshorn, K., Hovius, N., Dade, W. B. & Slingerland, R. L. Climate-driven bedrock incision in an active mountain belt. Science 297, 2036–2038 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Whipple, K. X. & Meade, B. J. Orogen response to changes in climatic and tectonic forcing. Earth Planet. Sci. Lett. 243, 218–228 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Willett, S. D., Schlunegger, F. & Picotti, V. Messinian climate change and erosional destruction of the central European Alps. Geology 34, 613–616 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Hilley, G. E. et al. Earth’s topographic relief potentially limited by an upper bound on channel steepness. Nat. Geosci. 12, 828–832 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Baldwin, J. A., Whipple, K. X. & Tucker, G. E. Implications of the shear stress river incision model for the timescale of postorogenic decay of topography. J. Geophys. Res. Solid Earth 108, 2158 (2003).

  • Egholm, D. L., Knudsen, M. F. & Sandiford, M. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers. Nature 498, 475–478 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Molnar, P. & Lyon-Caen, H. Some simple physical aspects of the support, structure, and evolution of mountain belts. Geol. Soc. Am. Spec. Pap. 218, 179–207 (1988).


    Google Scholar
     

  • Sandiford, M. & Powell, R. Some isostatic and thermal consequences of the vertical strain geometry in convergent orogens. Earth Planet. Sci. Lett. 98, 154–165 (1990).

    ADS 
    Article 

    Google Scholar
     

  • Zhou, S. H. & Sandiford, M. On the stability of isostatically compensated mountain belts. J. Geophys. Res. Solid Earth 97, 14207–14221 (1992).

    Article 

    Google Scholar
     

  • Vanderhaeghe, O., Medvedev, S., Fullsack, P., Beaumont, C. & Jamieson, R. A. Evolution of orogenic wedges and continental plateaux: insights from crustal thermal-mechanical models overlying subducting mantle lithosphere. Geophys. J. Int. 153, 27–51 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Wolf, S. G. & Huismans, R. S. Mountain building or backarc extension in ocean-continent subduction systems: a function of backarc lithospheric strength and absolute plate velocities. J. Geophys. Res. Solid Earth 124, 7461–7482 (2019).

    Article 

    Google Scholar
     

  • Whipple, K. X. Bedrock rivers and the geomorphology of active orogens. Ann. Rev. Earth Planet. Sci. 32, 151–185 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sklar, L. S. & Dietrich, W. E. Sediment and rock strength controls on river incision into bedrock. Geology 29, 1087–1090 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Molnar, P., Anderson, R. S. & Anderson, S. P. Tectonics, fracturing of rock, and erosion. J. Geophys. Res. Earth Surf. 112, F03014 (2007).

  • Starke, J., Ehlers, T. A. & Schaller, M. Latitudinal effect of vegetation on erosion rates identified along western South America. Science 367, 1358–1361 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ellis, S., Fullsack, P. & Beaumont, C. Oblique convergence of the crust driven by basal forcing -implications for length-scales of deformation and strain partitioning in orogens. Geophys. J. Int. 120, 24–44 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Batt, G. E. & Braun, J. The tectonic evolution of the Southern Alps, New Zealand: insights from fully thermally coupled dynamical modelling. Geophys. J. Int. 136, 403–420 (1999).

    ADS 
    Article 

    Google Scholar
     

  • Norris, R. J. & Cooper, A. F. Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. J. Struct. Geol. 23, 507–520 (2001).

    ADS 
    Article 

    Google Scholar
     

  • Little, T. A. Transpressive ductile flow and oblique ramping of lower crust in a two-sided orogen: insight from quartz grain-shape fabrics near the Alpine fault, New Zealand. Tectonics 23, TC2013 (2004).

  • Jiao, R., Herman, F. & Seward, D. Late Cenozoic exhumation model of New Zealand: impacts from tectonics and climate. Earth Sci. Rev. 166, 286–298 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Herman, F., Cox, S. C. & Kamp, P. J. J. Low-temperature thermochronology and thermokinematic modeling of deformation, exhumation, and development of topography in the central Southern Alps, New Zealand. Tectonics 28, https://doi.org/10.1029/2008TC002367 (2009).

  • Suppe, J. A retrodeformable cross section of northern Taiwan. Proc. Geol. Soc. China 23, 46–55 (1980).


    Google Scholar
     

  • Brown, D., Alvarez-Marron, J., Schimmel, M., Wu, Y. M. & Camanni, G. The structure and kinematics of the central Taiwan mountain belt derived from geological and seismicity data. Tectonics 31, TC5013 (2012).

  • Brown, D. et al. How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold-and-thrust belt. Tectonics 36, 1275–1294 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Simoes, M. et al. Mountain building in Taiwan: a thermokinematic model. J. Geophys. Res. Solid Earth 112, https://doi.org/10.1029/2006JB004824 (2007).

  • Van Avendonk, H. J. A. et al. Deep crustal structure of an arc-continent collision: constraints from seismic traveltimes in central Taiwan and the Philippine Sea. J. Geophys. Res. Solid Earth 119, 8397–8416 (2014).

    ADS 
    Article 

    Google Scholar
     

  • DeCelles, P. et al. Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile (Geological Society of America, 2015).

  • Replumaz, A., Negredo, A. M., Guillot, S., van der Beek, P. & Villasenor, A. Crustal mass budget and recycling during the India/Asia collision. Tectonophysics 492, 99–107 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Ingalls, M., Rowley, D. B., Currie, B. & Colman, A. S. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation. Nat. Geosci. 9, 848–853 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Schmalholz, S. M., Medvedev, S., Lechmann, S. M. & Podladchikov, Y. Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy. Geophys. J. Int. 197, 680–696 (2014).

    ADS 
    Article 

    Google Scholar
     

  • Burbank, D. W. et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505–510 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Herman, F. et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J. Geophys. Res. Solid Earth 115, https://doi.org/10.1029/2008JB006126 (2010).

  • Oncken, O. et al. in The Andes. Frontiers in Earth Sciences (eds Oncken, O. et al.) 3–27 (Springer, 2006).

  • Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L. & May, D. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–311 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wobus, C. W., Hodges, K. V. & Whipple, K. X. Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology 31, 861–864 (2003).

    ADS 
    Article 

    Google Scholar
     

  • Kirby, E. & Whipple, K. X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 44, 54–75 (2012).

    ADS 
    Article 

    Google Scholar
     

  • Curry, M. E., van der Beek, P., Huismans, R. S., Wolf, S. G. & Muñoz, J. A. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth Planet. Sci. Lett. 515, 26–37 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Harel, M.-A., Mudd, S. & Attal, M. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology 268, 184–196 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Stock, J. D. & Montgomery, D. R. Geologic constraints on bedrock river incision using the stream power law. J. Geophys. Res. Solid Earth 104, 4983–4993 (1999).

    Article 

    Google Scholar
     

  • Guerit, L. et al. Fluvial landscape evolution controlled by the sediment deposition coefficient: Estimation from experimental and natural landscapes. Geology 47, 853–856 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Densmore, A. L., Allen, P. A. & Simpson, G. Development and response of a coupled catchment fan system under changing tectonic and climatic forcing. J. Geophys. Res. Earth Sci. 112, F01002 (2007).

  • Armitage, J. J., Jones, T. D., Duller, R. A., Whittaker, A. C. & Allen, P. A. Temporal buffering of climate-driven sediment flux cycles by transient catchment response. Earth Planet. Sci. Lett. 369, 200–210 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • England, P. & McKenzie, D. A thin viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc. 70, 295–321 (1982).

    ADS 
    Article 

    Google Scholar
     

  • England, P. & McKenzie, D. Correction to – A thin viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc. 73, 523–532 (1983).

    ADS 
    Article 

    Google Scholar
     

  • Wobus, C. et al. in Tectonics, Climate, and Landscape Evolution (eds Willett, S. D., Hovius, N., Brandon, M. T. & Fisher, D. M.) 55–74 (Geological Society of America, 2006).

  • Gleason, G. C. & Tullis, J. A flow law for dislocation creep of quartz aggregates determined with the molten-salt cell. Tectonophysics 247, 1–23 (1995).

    ADS 
    Article 

    Google Scholar
     

  • Mackwell, S. J., Zimmerman, M. E. & Kohlstedt, D. L. High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. Solid Earth 103, 975–984 (1998).

    Article 

    Google Scholar
     

  • Karato, S. & Wu, P. Rheology of the upper mantle – a synthesis. Science 260, 771–778 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Owens, T. J. & Zandt, G. Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387, 37–43 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Source link