May 5, 2024
Topological kagome magnets and superconductors – Nature

Topological kagome magnets and superconductors – Nature

  • Syôzi, I. Statistics of kagomé lattice. Prog. Theor. Phys. 6, 306–308 (1951). Introduction of the kagome lattice to quantum physics.

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Onsager, L. et al. Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65, 117–149 (1944).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heisenberg, W. Zur Theorie des Ferromagnetismus. Z. Phys. 49, 619–636 (1928).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Stoner, E. C. Collective electron ferromagnetism. Proc. R. Soc. Lond. Ser. A 165, 372–414 (1938).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Mielke, A. Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. A 24, L73 (1991). Identification of electronic structure in a kagome lattice.

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Anderson, P. W. More is different. Science 177, 393–396 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hasan, M. Z., Xu, S.-Y. & Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys. Scr. 2015, 014001 (2015).

  • Keimer, B., Kivelson, S., Norman, M., Uchida, M. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, H. M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Tang, E., Mei, J. W. & Wen, X. G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Xu, G., Lian, B. & Zhang, S.-C. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12. Phys. Rev. Lett. 115, 186802 (2015). Prediction of a kagome Chern magnet.

    Article 
    ADS 

    Google Scholar
     

  • Halperin, B. I. Possible states for a three-dimensional electron gas in a strong magnetic field. Jpn J. Appl. Phys. 26, 1913–1919 (1987).

  • Weyl, H. Elektron und gravitation. I. Z. Phys. 56, 330–352 (1929).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Qi, X.-L. Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett. 107, 126803 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87, 115135 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, W., Gong, S.-S., Zeng, T.-S., Fu, L. & Sheng, D. S. Interaction-driven spontaneous quantum Hall effect on a kagome lattice. Phys. Rev. Lett. 117, 096402 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ko, W.-H., Lee, P. A. & Wen, X.-G. Doped kagome system as exotic superconductor. Phys. Rev. B 79, 214502 (2009). Prediction of time-reversal-symmetry-breaking kagome superconductivity.

    Article 
    ADS 

    Google Scholar
     

  • Kida, T. et al. The giant anomalous Hall effect in the ferromagnet Fe3Sn2—a frustrated kagome metal. J. Phys. Condens. Matter 23, 112205 (2011). Observation of giant anomalous Hall effect in a kagome ferromagnet.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a noncollinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). Observation of room-temperature giant anomalous Hall effect in a kagome antiferromagnet.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018). Observation of massive Dirac fermions in a kagome ferromagnetic metal.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, J. X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018). Observation of spin–orbit tunability, Berry curvature response and electronic nematicity in a kagome magnet.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fenner, L. A., Dee, A. A. & Wills, A. S. Non-collinearity and spin frustration in the itinerant kagome ferromagnet Fe3Sn2. J. Phys. Condens. Matter 21, 452202 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, Z. et al. Observation of various and spontaneous magnetic skyrmionic bubbles at room temperature in a frustrated kagome magnet with uniaxial magnetic anisotropy. Adv. Mater. 29, 1701144 (2017).

    Article 

    Google Scholar
     

  • Wang, Q., Yin, Q. & Lei, H. Giant topological Hall effect of ferromagnetic kagome metal Fe3Sn2. Chin. Phys. B 29, 017101 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Magnetic-field control of topological electronic response near room temperature in correlated kagome magnets. Phys. Rev. Lett. 123, 196604 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ye, L. et al. de Haas–van Alphen effect of correlated Dirac states in kagome metal Fe3Sn2. Nat. Commun. 10, 4870 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tanaka, H. et al. Three-dimensional electronic structure in ferromagnetic Fe3Sn2 with breathing kagome bilayers. Phys. Rev. B 101, 161114(R) (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fang, S. Ferromagnetic helical nodal line and Kane–Mele spin–orbit coupling in kagome metal Fe3Sn2. Phys. Rev. B 105, 035107 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Venturini, G., ElIdrissi, B. C. & Malaman, B. Magnetic properties of RMn6Sn6 (R = Sc, Y, Gd–Tm, Lu) compounds with HfFe6Ge6 type structure. J. Magn. Magn. Mater. 94, 35–42 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020). Observation of a quantum-limit kagome Chern magnet with topological edge state.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, W. et al. Rare earth engineering in RMn6Sn6 (R = Gd–Tm, Lu) topological kagome magnets. Phys. Rev. Lett. 126, 246602 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, X. et al. Topological charge–entropy scaling in kagome Chern magnet TbMn6Sn6. Nat. Commun. 13, 1197 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Exchange-biased topological transverse thermoelectric effects in a kagome ferrimagnet. Nat. Commun. 13, 1091 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mott, N. F. et al. The Theory of the Properties of Metals and Alloys (Courier Dover Publications, 1958).

  • Wiedemann, G. & Franz, R. Relative conductivity of solids. Ann. Phys. Chem. 89, 497–531 (1853).


    Google Scholar
     

  • Asaba, T. et al. Anomalous Hall effect in the kagome ferrimagnet GdMn6Sn6. Phys. Rev. B 101, 174415 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ghimire, N. J. et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 6, eabe2680 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, M. et al. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6. Nat. Commun. 12, 3129 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6. Phys. Rev. B 103, 014416 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peng, S. et al. Realizing kagome band structure in two-dimensional kagome surface states of RV6Sn6 (R=Gd, Ho). Phys. Rev. Lett. 127, 266401 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, H. et al. Manipulation of Dirac band curvature and momentum-dependent g factor in a kagome magnet. Nat. Phys. 18, 644–649 (2022). Momentum-resolved g factor in a kagome antiferromagnet.

    Article 
    CAS 

    Google Scholar
     

  • Riberolles, S. X. M. et al. Low temperature competing magnetic energy scales in the topological ferrimagnet TbMn6Sn6. Phys. Rev. X 12, 021043 (2022).

  • Chen, D. et al. Large anomalous Hall effect in the kagome ferromagnet LiMn6Sn6. Phys. Rev. B 103, 144410 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siegfried, P. E. et al. Magnetization-driven Lifshitz transition and charge-spin coupling in the kagome metal YMn6Sn6. Commun. Phys. 5, 58 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Armitage, N. P., Mele, E. J. & Vishwannath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Hasan, M. Z. et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat. Rev. Mater. 6, 784–803 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017). Prediction of kagome Weyl materials.

    Article 
    ADS 

    Google Scholar
     

  • Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weihrich, R., Anusca, I. & Zabel, M. Half-antiperovskites: structure and type–antitype relations of shandites M3/2As (M = Co, Ni; A = In, Sn). Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019). Observation of topological flat-band and orbital magnetization in a kagome magnet.

    Article 
    CAS 

    Google Scholar
     

  • Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046401 (2020). Observation of many-body resonance in a topological kagome magnet.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Anomalous Nernst and Righi–Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon 12, 73–78 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020). Proposal for spintronic application of a kagome Weyl magnet.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann–Franz law. Sci. Adv. 6, eaaz3522 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chaudhary, G., Burkov, A. A. & Heinonen, O. G. Magnetism and magnetotransport in the kagome antiferromagnet Mn3Ge. Phys. Rev. B 105, 085108 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guguchia, Z. et al. Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet. Nat. Commun. 11, 559 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 365, 1282–1285 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019). Quasiparticle scattering of the surface Fermi arc states in a kagome magnet.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, J.-X. et al. Spin–orbit quantum impurity in a topological magnet. Nat. Commun. 11, 4415 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Belopolski, I. et al. Signatures of Weyl fermion annihilation in a correlated kagome magnet. Phys. Rev. Lett. 127, 256403 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, D. et al. Direct observation of the spin–orbit coupling effect in magnetic Weyl semimetal Co3Sn2S2. npj Quantum Mater. 7, 11 (2022). Momentum–resolved spin–orbit gap in a kagome Weyl magnet.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Burkov, A.  A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Si, Q. & Steglich, F. Heavy fermions and quantum phase transitions. Science 329, 1161–1166 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Z. H. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, J. X. et al. Fermion–boson many-body interplay in a frustrated kagome paramagnet. Nat. Commun. 11, 4003 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meier, W. R. et al. Flat bands in the CoSn-type compounds. Phys. Rev. B 102, 075148 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xie, Y. et al. Spin excitations in metallic kagome lattice FeSn and CoSn. Commun. Phys. 4, 240 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Huang, H. et al. Flat-band-induced anomalous anisotropic charge transport and orbital magnetism in kagome metal CoSn. Phys. Rev. Lett. 128, 096601 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wan, S., Lu, H. & Huang, L. Temperature dependence of correlated electronic states in the archetypal kagome metal CoSn. Phys. Rev. B 105, 155131 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018). Kagome flat-band-induced emergent ferromagnetism.

    Article 
    ADS 

    Google Scholar
     

  • Sales, B. C. et al. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Phys. Rev. Mater. 3, 114203 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Vanderbilt, D. in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge Univ. Press, 2018).

  • Xing, Y. et al. Localized spin–orbit polaron in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 5613 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Dirac fermions in antiferromagnetic FeSn kagome lattices with combined space inversion and time-reversal symmetry. Phys. Rev. B 102, 155103 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Inoue, H. et al. Molecular beam epitaxy growth of antiferromagnetic kagome metal FeSn. Appl. Phys. Lett. 115, 072403 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Han, M. et al. Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn. Nat. Commun. 12, 5345 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Matthias, B. T., Suhl, H. & Corenzwit, E. Ferromagnetic superconductors. Phys. Rev. Lett. 1, 449 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mielke, C. III et al. Local spectroscopic evidence for a nodeless magnetic kagome superconductor CeRu2. J. Phys. Condens. Matter 34, 485601 (2022).

  • Ku, H. C., Meisner, G. P., Acker, F. & Johnston, D. C. Superconducting and magnetic properties of new ternary borides with the CeCo3B2-type structure. Solid State Commun. 35, 91 (1980).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mielke, C.III. et al. Nodeless kagome superconductivity in LaRu3Si2. Phys. Rev. Mater. 5, 034803 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020). Observation of superconductivity in AV3Sb5 compounds.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, Y. X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021). Observation of 2 × 2 charge-density-wave order with magnetic response in a kagome superconductor.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).

    CAS 

    Google Scholar
     

  • Ishioka, J. et al. Chiral charge-density waves. Phys. Rev. Lett. 105, 176401 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Wezel, J. Chirality and orbital order in charge density waves. Europhys. Lett. 96, 67011 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Hildebrand, B. et al. Local real-space view of the achiral 1T-TiSe2 2 × 2 × 2 charge density wave. Phys. Rev. Lett. 120, 136404 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, S. Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).

    CAS 

    Google Scholar
     

  • Zhao, H. et al. Cascade of correlated electron states in a kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021). Observation of pair density wave in a kagome superconductor.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miao, H. et al. Geometry of the charge density wave in the kagome metal AV3Sb5. Phys. Rev. B 104, 195132 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ratcliff, N. et al. Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal CsV3Sb5. Phys. Rev. Mater. 5, L111801 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Uykur, E. et al. Optical detection of the density-wave instability in the kagome metal KV3Sb5. npj Quantum Mater. 7, 16 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Xie, Y. et al. Electron–phonon coupling in the charge density wave state of CsV3Sb5. Phys. Rev. B 105, L140501 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, G. et al. Observation of anomalous amplitude modes in the kagome metal CsV3Sb5. Nat. Commun. 13, 3461 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, J. et al. Possible star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5. npj Quantum Mater. 7, 30 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shumiya, N. et al. Intrinsic nature of chiral charge order in the kagome superconductor RbV3Sb5. Phys. Rev. B 104, 035131 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ortiz, B. R. et al. Fermi surface mapping and the nature of charge-density-wave order in the kagome superconductor CsV3Sb5. Phys. Rev. X 11, 041030 (2021).

    CAS 

    Google Scholar
     

  • Ni, S. et al. Anisotropic superconducting properties of kagome metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Charge-density-wave-induced bands renormalization and energy gaps in a kagome superconductor RbV3Sb5. Phys. Rev. X 11, 041010 (2021).

    CAS 

    Google Scholar
     

  • Nakayama, K. et al. Multiple energy scales and anisotropic energy gap in the charge-density-wave phase of the kagome superconductor CsV3Sb5. Phys. Rev. B 104, L161112 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cho, S. et al. Emergence of new van Hove singularities in the charge density wave state of a topological kagome metal RbV3Sb5. Phys. Rev. Lett. 127, 236401 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B 104, 035142 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B 104, 214513 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, H. et al. Electronic nature of charge density wave and electron–phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kang, M. et al. Twofold van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Song, D. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Sci. China Phys. Mech. Astron. 65, 247462 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, abl4108 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Neupert, T. et al. Charge order and superconductivity in kagome materials. Nat. Phys. 18, 137–143 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kenney, E., Ortiz, B., Wang, C., Wilson, S. & Graf, M. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, F. H. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the kagome superconductor AV3Sb5. Sci. Bull. 66, 1384–1388 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 217601 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A=K, Rb, Cs). Phys. Rev. B 104, 045122 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mielke, C. III. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022). Evidence for time-reversal-symmetry-breaking charge order via a magnetic-moment-sensitive probe.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guguchia, Z. et al. Tunable nodal kagome superconductivity in charge ordered RV3Sb5. Preprint at https://arxiv.org/abs/2202.07713 (2022).

  • Khasanov, R. et al. Charge order breaks time-reversal symmetry in CsV3Sb5. Phys. Rev. Res. 4, 023244 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. https://doi.org/10.1038/s41567-022-01805-7 (2022).

  • Guo, C. et al. Switchable chiral transport in charge-ordered CsV3Sb5. Nature 611, 461–466 (2022).

  • Teng, X.-K. et al. Discovery of charge density wave in a correlated kagome lattice antiferromagnet. Nature 609, 490–495 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yin, J.-X. et al. Discovery of charge order and corresponding edge state in kagome magnet FeGe. Phys. Rev. Lett. 129, 166401 (2022).

  • Mazin, I. I. et al. Theoretical prediction of a strongly correlated Dirac metal. Nat. Commun. 5, 4261 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5. Phys. Rev. B 103, L220504 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, Y. et al. Competition of superconductivity and charge density wave in selective oxidized CsV3Sb5 thin flakes. Phys. Rev. Lett. 127, 237001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Highly robust reentrant superconductivity in CsV3Sb5 under pressure. Chin. Phys. Lett. 38, 057402 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, C. C. et al. Double-dome superconductivity under pressure in the V-based kagome metals AV3Sb5 (A=Rb and K). Phys. Rev. B 105, 094507 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oey, Y. et al. Fermi level tuning and double-dome superconductivity in the kagome metals CsV3Sb5−xSnx. Phys. Rev. Mater. 6, L041801 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Tuning the competition between superconductivity and charge order in kagome superconductor Cs(V1-xNbx)3Sb5. Phys. Rev. B 105, L180507 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. npj Quantum Mater. 7, 49 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 177001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 187004 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. Gapless excitations inside the fully gapped kagome superconductors AV3Sb5. Phys. Rev. B 105, L100502 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lou, R. et al. Charge-density-wave-induced peak–dip–hump structure and the multiband superconductivity in a kagome superconductor CsV3Sb5. Phys. Rev. Lett. 128, 036402 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Keimer, B. & Moore, J. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Z.-A. Design and synthesis of a single-layer ferromagnetic metal−organic framework with topological nontrivial gaps. J. Phys. Chem. C 124, 27017–27023 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fuchs, M. et al. Kagome metal–organic frameworks as a platform for strongly correlated electrons. J. Phys. Mater. 3, 025001 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Asaba, T. et al. Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet. Sci. Adv. 7, abf1467 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, abk1480 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Muechler, L. et al. Emerging chiral edge states from the confinement of a magnetic Weyl semimetal in Co3Sn2S2. Phys. Rev. B 101, 115106 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Howard, S. et al. Evidence for one-dimensional chiral edge states in a magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 12, 4269 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Regnault, N. et al. Catalogue of flat-band stoichiometric materials. Nature 603, 824–828 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rhim, J. W., Kim, K. & Yang, B. J. Quantum distance and anomalous Landau levels of flat bands. Nature 584, 59–63 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Lian, B., Sun, X.-Q., Vaezi, A., Qi, X.-L. & Zhang, S.-C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl Acad. Sci. USA 115, 10938–10942 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S=1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, Y.-C., Zaletel, M. P., Oshikawa, M. & Pollmann, F. Signatures of dirac cones in a DMRG study of the kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017).


    Google Scholar
     

  • Laughlin, R. B. Superconducting ground state of noninteracting particles obeying fractional statistics. Phys. Rev. Lett. 60, 2677–2680 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kalmeyer, V. & Laughlin, R. B. Theory of the spin liquid state of the Heisenberg antiferromagnet. Phys. Rev. B 39, 11879–11899 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Czajka, P. et al. Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3. Nat. Phys. 17, 915–919 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Di Sante, D. et al. Turbulent hydrodynamics in strongly correlated kagome metals. Nat. Commun. 11, 3997 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lima, F. C. Double flat bands in kagome twisted bilayers. Phys. Rev. B 100, 155421 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Scheer, M. G., Gu, K. & Lian, B. Magic angles in twisted bilayer graphene near commensuration: towards a hypermagic regime. Phys. Rev. B 106, 115418 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link