May 7, 2024
Transannular C–H functionalization of cycloalkane carboxylic acids – Nature

Transannular C–H functionalization of cycloalkane carboxylic acids – Nature

  • Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nicolaou, K. C. & Sorensen, E. J. Classics in Total Synthesis: Targets, Strategies, Methods (Wiley, 1996).

  • Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Z., Song, Y., Zhan, P., Zhang, Q. & Liu, X. Conformational restriction: an effective tactic in ‘follow-on’-based drug discovery. Future Med. Chem. 6, 885–901 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shearer, J., Castro, J. L., Lawson, A. D. G., MacCoss, M. & Taylor, R. D. Rings in clinical trials and drugs: present and future. J. Med. Chem. 65, 8699–8712 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dominguez, C. et al. Histone deacetylase inhibitors for treatment of neurodegenerative diseases. Patent WO 2014/159224 A1 (2 October 2014).

  • Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1989).

  • Ma, S. Handbook of Cyclization Reactions (Wiley, 2009).

  • Brill, Z. G., Condakes, M. L., Ting, C. P. & Maimone, T. J. Navigating the chiral pool in the total synthesis of complex terpene natural products. Chem. Rev. 117, 11753–11795 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, G. et al. Reversing conventional site-selectivity in C(sp3)–H bond activation. Nat. Chem. 11, 571–577 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, Z. et al. Molecular editing of aza-arene C–H bonds by distance, geometry and chirality. Nature 610, 87–93 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, G. et al. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaitsev, V. G., Shabashov, D. & Daugulis, O. Highly regioselective arylation of sp3 C–H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 127, 13154–13155 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banerjee, A., Sarkar, S. & Patel, B. K. C–H functionalization of cycloalkanes. Org. Biomol. Chem. 15, 505–530 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andra, M. S. et al. Enantio- and diastereoswitchable C–H arylation of methylene groups in cycloalkanes. Chem. Eur. J. 25, 8503–8507 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • He, G. & Chen, G. A practical strategy for the structural diversification of aliphatic scaffolds through the palladium-catalyzed picolinamide-directed remote functionalization of unactivated C(sp3)–H bonds. Angew. Chem. Int. Edn 50, 5192–5196 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cui, W. et al. Palladium-catalyzed remote C(sp3)−H arylation of 3-pinanamine. Org. Lett. 16, 4288–4291 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seki, A., Takahashi, Y. & Miyake, T. Synthesis of cis-3-arylated cycloalkylamines through palladium-catalyzed methylene sp3 carbon–hydrogen-bond activation. Tetrahedron Lett. 55, 2838–2841 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y., Chen, Y., Liu, T., Eastgate, M. D. & Yu, J. Q. Pd-catalyzed γ-C(sp3)−H arylation of free amines using a transient directing group. J. Am. Chem. Soc. 138, 14554–14557 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Topczewski, J. J., Cabrera, P. J., Saper, N. I. & Sanford, M. S. Palladium-catalysed transannular C–H functionalization of alicyclic amines. Nature 531, 220–224 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y., Young, M. C., Wang, C., Magness, D. M. & Dong, G. Catalytic C(sp3)–H arylation of free primary amines with an exo directing group generated in situ. Angew. Chem. Int. Edn 55, 9084–9087 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Van Steijvoort, B. F., Kaval, N., Kulago, A. A. & Maes, B. U. W. Remote functionalization: palladium-catalyzed C5(sp3)–H arylation of 1-Boc-3-aminopiperidine through the use of a bidentate directing group. ACS Catal. 6, 4486–4490 (2016).

    Article 

    Google Scholar
     

  • Zhao, J., Zhao, X., Cao, P., Liu, J. & Wu, B. Polycyclic azetidines and pyrrolidines via palladium-catalyzed intramolecular amination of unactivated C(sp3)−H bonds. Org. Lett. 19, 4880–4883 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coomber, C. E. et al. Silver-free palladium-catalyzed C(sp3)−H arylation of saturated bicyclic amine scaffolds. J. Org. Chem. 83, 2495–2503 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabrera, P. J., Lee, M. & Sanford, M. S. Second-generation palladium catalyst system for transannular C−H functionalization of azabicycloalkanes. J. Am. Chem. Soc. 140, 5599–5606 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. Q. et al. Overcoming the limitations of γ- and δ-C−H arylation of amines through ligand development. J. Am. Chem. Soc. 140, 17884–17894 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landge, V. G., Parveen, A., Nandakumar, A. & Balaraman, E. Pd(II)-catalyzed gamma-C(sp3)–H alkynylation of amides: selective functionalization of R chains of amides R1C(O)NHR. Chem. Commun. 54, 7483–7486 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Aguilera, E. Y. & Sanford, M. S. Model complexes for the palladium-catalyzed transannular C−H functionalization of alicyclic amines. Organometallics 38, 138–142 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z., Dechantsreiter, M. & Dandapani, S. Systematic investigation of the scope of transannular C−H heteroarylation of cyclic secondary amines for synthetic application in medicinal chemistry. J. Org. Chem. 85, 6747–6760 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chan, H. S. S., Yang, J. & Yu, J.-Q. Catalyst-controlled site-selective methylene C–H lactonization of dicarboxylic acids. Science 376, 1481–1487 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, B., Romine, A. M., Rubel, C. Z., Engle, K. M. & Shi, B.-F. Transition-metal-catalyzed, coordination-assisted functionalization of nonactivated C(sp3)−H bonds. Chem. Rev. 121, 14957–15074 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefane, B., Brozic, P., Vehovc, M., Rizner, T. L. & Gobec, S. New cyclopentane derivatives as inhibitors of steroid metabolizing enzymes AKR1C1 and AKR1C3. Eur. J. Med. Chem. 44, 2563–2571 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haydar, S. N. et al. 5-membered heteroaryl carboxamide compounds for treatment of HBV. Patent WO 2020/086533 A1 (30 April 2020).

  • Chen, H. et al. Oxadiazole transient receptor potential channel inhibitors. Patent WO 2018/162607 A1 (13 September 2018).

  • Chobanian, H. et al. Antidiabetic compounds. Patent WO 2015/119899 A1 (13 August 2015).

  • McMinn, D. & Rao, M. Thiazole derivatives as protein secretion inhibitors. Patent WO 2020/176863 A1 (3 September 2020).

  • Li, L. & Zhong, M. Inhibitors of HCV NS5A. Patent WO 2010/065681 A1 (10 June 2010).

  • Wager, T. T. et al.Discovery of two clinical histamine H3receptor antagonists: transN-ethyl-3-fluoro-3-[3-fluoro-4-(pyrrolidinylmethyl)-phenyl]cyclobutanecarboxamide (PF-03654746) and trans−3-fluoro-3-[3-fluoro-4-(pyrrolidin-1-ylmethyl)phenyl]-N-(2-methylpropyl)cyclobutanecarboxamide (PF-03654764). J. Med. Chem. 54, 7602–7620 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, Q., Wu, K., Zhuang, Z., Qian, S. & Yu, J.-Q. From Pd(OAc)2 to chiral catalysts: the discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C–H functionalization reactions. Acc. Chem. Res. 53, 833–851 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Ligand-controlled divergent dehydrogenative reactions of carboxylic acids via C−H activation. Science 374, 1281–1285 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamama, W. S., El-Magid, O. M. A. & Zoorob, H. H. Chemistry of quinuclidines as nitrogen bicyclic bridged-ring structures. J. Heterocyclic Chem. 43, 1397–1420 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. et al. Ligand-accelerated enantioselective methylene C(sp3)–H bond activation. Science 353, 1023–1027 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G. et al. Ligand-enabled β-C–H arylation of α-amino acids without installing exogenous directing groups. Angew. Chem. Int. Edn 56, 1506–1509 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhuang, Z. et al. Ligand-enabled β-C(sp3)–H olefination of free carboxylic acids. J. Am. Chem. Soc. 140, 10363–10367 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, L. et al. Pd(II)-catalyzed enantioselective C(sp3)−H activation/cross-coupling reactions of free carboxylic acids. Angew. Chem. Int. Edn 58, 2134–2138 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Strassfeld, D. A., Chen, C.-Y., Park, H. S., Phan, J. & Yu, J.-Q. δ-C(sp3)–H activation of free alcohols enabled by rationally designed H-bond-acceptor ligands. Preprint at https://doi.org/10.26434/chemrxiv-2023-19xhw (2023).

  • Li, C.-J. Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc. Chem. Res. 42, 335–344 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. Ligand-accelerated non-directed C–H functionalization of arenes. Nature 551, 489–493 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link