May 30, 2024

Transforming representations of movement from body- to world-centric space – Nature

  • 1.

    Bicanski, A. & Burgess, N. Neuronal vector coding in spatial cognition. Nat. Rev. Neurosci. 21, 453–470 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Wang, C., Chen, X. & Knierim, J. J. Egocentric and allocentric representations of space in the rodent brain. Curr. Opin. Neurobiol. 60, 12–20 (2020).

    CAS 

    Google Scholar
     

  • 3.

    Wolff, T., Iyer, N. A. & Rubin, G. M. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits. J. Comp. Neurol. 523, 997–1037 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Wolff, T. & Rubin, G. M. Neuroarchitecture of the Drosophila central complex: a catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog. J. Comp. Neurol. 526, 2585–2611 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Hulse, B. K. et al. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 10, e66039 (2021).

    PubMed 

    Google Scholar
     

  • 6.

    Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W. & Card, G. M. The functional organization of descending sensory-motor pathways in Drosophila. eLife 7, e34272 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Behbahani, A. H., Palmer, E. H., Corfas, R. A. & Dickinson, M. H. Drosophila re-zero their path integrator at the center of a fictive food patch. Curr. Biol. 31, 4534–4546.e5 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Kim, I. S. & Dickinson, M. H. Idiothetic path integration in the fruit fly Drosophila melanogaster. Curr. Biol. 27, 2227–2238 e3 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Müller, M. & Wehner, R. Path integration in desert ants, Cataglyphis fortis. Proc. Natl Acad. Sci. USA 85, 5287–5290 (1988).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 10.

    Esch, H. & Burns, J. Distance estimation by foraging honeybees. J. Exp. Biol. 199, 155–162 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Ronacher, B. Path integration as the basic navigation mechanism of the desert ant Cataglyphis fortis (Forel, 1902) (Hymenoptera: Formicidae). Myrmecol. News 11, 53–62 (2008).


    Google Scholar
     

  • 12.

    Corfas, R. A., Sharma, T. & Dickinson, M. H. Diverse food-sensing neurons trigger idiothetic local search in Drosophila. Curr. Biol. 29, 1660–1668.e4 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Ronacher, B. D. & Wehner, R. Desert ants Cataglyphis fortis use self-induced optic flow to measure distance travelled. J. Comp. Physiol. A 177, 21–27 (1995).


    Google Scholar
     

  • 14.

    Schöne, H. Optokinetic speed control and estimation of travel distance in walking honeybees. J. Comp. Physiol. A 179, 587–592 (1996).

    ADS 

    Google Scholar
     

  • 15.

    Wittlinger, M., Wehner, R. & Wolf, H. The ant odometer: stepping on stilts and stumps. Science 312, 1965–1967 (2006).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 16.

    Tuthill, J. C. & Wilson, R. I. Mechanosensation and adaptive motor control in insects. Curr. Biol. 26, R1022–R1038 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 18.

    Turner-Evans, D. et al. Angular velocity integration in a fly heading circuit. eLife 6, e23496 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Green, J. et al. A neural circuit architecture for angular integration in Drosophila. Nature 546, 101–106 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 20.

    Stone, T. et al. An anatomically constrained model for path integration in the bee brain. Curr. Biol. 27, 3069–3085.e11 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Shiozaki, H. M., Ohta, K. & Kazama, H. A multi-regional network encoding heading and steering maneuvers in Drosophila. Neuron 106, 126–141.e5 (2020).

    CAS 

    Google Scholar
     

  • 22.

    Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Reiser, M. B. & Dickinson, M. H. A modular display system for insect behavioral neuroscience. J. Neurosci. Methods 167, 127–139 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila. Preprint at https://doi.org/10.1101/2020.06.12.148775 (2020).

  • 27.

    Liu, W. W. & Wilson, R. I. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc. Natl Acad. Sci. USA 110, 10294–10299 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 28.

    Lacin, H. et al. Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS. eLife 8, e43701 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Hampel, S., Franconville, R., Simpson, J. H. & Seeds, A. M. A neural command circuit for grooming movement control. eLife 4, e08758 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    DeAngelis, B. D., Zavatone-Veth, J. A. & Clark, D. A. The manifold structure of limb coordination in walking Drosophila. eLife 8, e46409 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Rayshubskiy, A. et al. Neural circuit mechanisms for steering control in walking Drosophila. Preprint at https://doi.org/10.1101/2020.04.04.024703 (2020).

  • 32.

    Wittmann, T. & Schwegler, H. Path integration—a network model. Biol. Cybern. 73, 569–575 (1995).

    MATH 

    Google Scholar
     

  • 33.

    Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M. & el Jundi, B. Central neural coding of sky polarization in insects. Philos. Trans. R. Soc. Lond. B 366, 680–687 (2011).


    Google Scholar
     

  • 34.

    Vinepinsky, E. et al. Representation of edges, head direction, and swimming kinematics in the brain of freely-navigating fish. Sci. Rep. 10, 14762 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 35.

    Wang, C. et al. Egocentric coding of external items in the lateral entorhinal cortex. Science 362, 945–949 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 36.

    Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B. & Moser, E. I. Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868 (2008).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 37.

    Savelli, F., Yoganarasimha, D. & Knierim, J. J. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18, 1270–1282 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Deshmukh, S. S. & Knierim, J. J. Influence of local objects on hippocampal representations: landmark vectors and memory. Hippocampus 23, 253–267 (2013).

    PubMed 

    Google Scholar
     

  • 39.

    Byrne, P., Becker, S. & Burgess, N. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Bicanski, A. & Burgess, N. A neural-level model of spatial memory and imagery. eLife 7, e33752 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Lyu, C., Abbott, L. F. & Maimon, G. Building an allocentric travelling direction signal via vector computation. Nature https://doi.org/10.1038/s41586-021-04067-0 (2021).

  • 42.

    Srinivasan, M., Zhang, S., Lehrer, M. & Collett, T. Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 237–244 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Wilson, R. I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Pfeiffer, B. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Tirian, L. & Dickson, B. J. The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. Preprint at https://doi.org/10.1101/198648 (2017).

  • 46.

    Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl Acad. Sci. USA 112, E2967–E2976 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 47.

    Miyamoto, T., Slone, J., Song, X. & Amrein, H. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113–1125 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Pfeiffer, B. D., Truman, J. W. & Rubin, G. M. Using translational enhancers to increase transgene expression in Drosophila. Proc. Natl Acad. Sci. USA 109, 6626–6631 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 50.

    von Reyn, C. R. et al. A spike-timing mechanism for action selection. Nat. Neurosci. 17, 962 (2014).


    Google Scholar
     

  • 51.

    Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Gouwens, N. W. & Wilson, R. I. Signal propagation in Drosophila central neurons. J. Neurosci. 29, 6239–6249 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Moore, R. J. et al. FicTrac: a visual method for tracking spherical motion and generating fictive animal paths. J. Neurosci. Methods 225, 106–119 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Morimoto, M. M. et al. Spatial readout of visual looming in the central brain of Drosophila. eLife 9, e57685 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Kempter, R., Leibold, C., Buzsáki, G., Diba, K. & Schmidt, R. Quantifying circular–linear associations: hippocampal phase precession. J. Neurosci. Methods 207, 113–124 (2012).

    PubMed 

    Google Scholar
     

  • 57.

    Clements, J. et al. neuPrint: Analysis Tools for EM Connectomics. Preprint at https://doi.org/10.1101/2020.01.16.909465 (2020).

  • 58.

    Bates, A. S. et al. The natverse, a versatile toolbox for combining and analysing neuroanatomical data. eLife 9, e53350 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Tobin, W. F., Wilson, R. I. & Lee, W.-C. A. Wiring variations that enable and constrain neural computation in a sensory microcircuit. eLife 6, e24838 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link