April 26, 2024
Tree diversity increases decadal forest soil carbon and nitrogen accrual – Nature

Tree diversity increases decadal forest soil carbon and nitrogen accrual – Nature

  • Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur?. Biogeochemistry 13, 87–115 (1991).

    Article 

    Google Scholar
     

  • Chen, X. L., Chen, H. Y. H., Searle, E. B., Chen, C. & Reich, P. B. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 4, 225–234 (2021).

    Article 

    Google Scholar
     

  • Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95, 167–183 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, S. P. et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl Acad. Sci. USA 115, 4027–4032 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X., Hisano, M., Taylor, A. R. & Chen, H. Y. H. The effects of functional diversity and identity (acquisitive versus conservative strategies) on soil carbon stocks are dependent on environmental contexts. For. Ecol. Manag. 503, 119820 (2022).

    Article 

    Google Scholar
     

  • Dawud, S. M. et al. Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems 19, 645–660 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Conti, G. & Diaz, S. Plant functional diversity and carbon storage – an empirical test in semi-arid forest ecosystems. J. Ecol. 101, 18–28 (2013).

    Article 
    CAS 

    Google Scholar
     

  • van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    PubMed 

    Google Scholar
     

  • Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 1340 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Dawud, S. M. et al. Tree species functional group is a more important driver of soil properties than tree species diversity across major European forest types. Funct. Ecol. 31, 1153–1162 (2017).

    Article 

    Google Scholar
     

  • Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, Z. K. et al. Tree mycorrhizal associations mediate soil fertility effects on forest community structure in a temperate forest. New Phytol. 223, 475–486 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Chen, H. Y. H. & Taylor, A. R. Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Funct. Ecol. 31, 419–426 (2017).

    Article 

    Google Scholar
     

  • Post, W. M., Pastor, J., Zinke, P. J. & Stangenberger, A. G. Global patterns of soil nitrogen storage. Nature 317, 613–616 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Jing, X. et al. Above- and below-ground complementarity rather than selection drive tree diversity–productivity relationships in European forests. Funct. Ecol. 35, 1756–1767 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jucker, T., Bouriaud, O., Avacaritei, D. & Coomes, D. A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett. 17, 1560–1569 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Jucker, T. et al. Climate modulates the effects of tree diversity on forest productivity. J. Ecol. 104, 388–398 (2016).

    Article 

    Google Scholar
     

  • van der Voort, T. S. et al. Variability in 14C contents of soil organic matter at the plot and regional scale across climatic and geologic gradients. Biogeosciences 13, 3427–3439 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shovon, T. A., Kang, S., Scherer-Lorenzen, M. & Nock, C. A. Changes in the direction of the diversity–productivity relationship over 15 years of stand development in a planted temperate forest. J. Ecol. 110, 1125–1137 (2022).

    Article 

    Google Scholar
     

  • De Deyn, G. B., Cornelissen, J. H. & Bardgett, R. D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).

    Article 

    Google Scholar
     

  • Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Adair, E. C., Hooper, D. U., Paquette, A. & Hungate, B. A. Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecol. Lett. 21, 1604–1619 (2018).

    Article 

    Google Scholar
     

  • Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Article 

    Google Scholar
     

  • Chen, X. & Chen, H. Y. H. Global effects of plant litter alterations on soil CO2 to the atmosphere. Glob. Change Biol. 24, 3462–3471 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).

    Article 

    Google Scholar
     

  • Rosell, J. A., Gleason, S., Mendez-Alonzo, R., Chang, Y. & Westoby, M. Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol. 201, 486–497 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kahl, T. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).

    Article 

    Google Scholar
     

  • Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, J. H. & Matzner, E. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 66, 265–286 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).

    Article 

    Google Scholar
     

  • Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191, 77–87 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Preston, C. M., Bhatti, J. S., Flanagan, L. B. & Norris, C. Stocks, chemistry, and sensitivity to climate change of dead organic matter along the Canadian boreal forest transect case study. Clim. Change 74, 223–251 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S. & Matzner, E. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52, 173–205 (2001).

    Article 

    Google Scholar
     

  • Pastore, M. A., Hobbie, S. E. & Reich, P. B. Sensitivity of grassland carbon pools to plant diversity, elevated CO2, and soil nitrogen addition over 19 years. Proc. Natl Acad. Sci. USA 118, e2016965118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yemshanov, D., McKenney, D. W. & Pedlar, J. H. Mapping forest composition from the Canadian National Forest Inventory and land cover classification maps. Environ. Monit. Assess. 184, 4655–4669 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).

    Article 

    Google Scholar
     

  • Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).

    Article 

    Google Scholar
     

  • Dyk, A. Forest composition across Canada. Canadian Forest Service https://cfs.nrcan.gc.ca/publications?id=35724 (2014).

  • Butler, E. E. et al. Increasing functional diversity in a global land surface model illustrates uncertainties related to parameter simplification. J. Geophys. Res. Biogeosci. 127, e2021JG006606 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canadian Forest Inventory Committee. Canada’s National Forest Inventory – Design Overview. Version 3.2 (Canadian Forest Service, 2004).

  • Lambert, M. C., Ung, C. H. & Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 35, 1996–2018 (2005).

    Article 

    Google Scholar
     

  • Chen, H. Y. H. & Klinka, K. Aboveground productivity of western hemlock and western redcedar mixed-species stands in southern coastal British Columbia. For. Ecol. Manag. 184, 55–64 (2003).

    Article 

    Google Scholar
     

  • British Columbia Ministry of Forests and Range and British Columbia Ministry of Environment. Field Manual for Describing Terrestrial Ecosystems 2nd edn (Province of British Columbia, 2010).

  • Gillis, M. D., Omule, A. Y. & Brierley, T. Monitoring Canada’s forests: the National Forest Inventory. For. Chron. 81, 214–221 (2005).

    Article 

    Google Scholar
     

  • Pearson, T. R. H., Brown, S. L. & Birdsey, R. A. Measurement Guidelines for the Sequestration of Forest Carbon (U.S. Department of Agriculture, Forest Service, Northern Research Station, 2007).

  • Pielou, E. C. An Introduction to Mathematical Ecology (Wiley, 1969).

  • Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article 

    Google Scholar
     

  • Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hisano, M. & Chen, H. Y. H. Spatial variation in climate modifies effects of functional diversity on biomass dynamics in natural forests across Canada. Glob. Ecol. Biogeogr. 29, 682–695 (2020).

    Article 

    Google Scholar
     

  • Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ruiz-Benito, P. et al. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Glob. Change Biol. 23, 4162–4176 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hisano, M., Ryo, M., Chen, X. & Chen, H. Y. H. Rapid functional shifts across high latitude forests over the last 65 years. Glob. Change Biol. 27, 3846–3858 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–173 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeugin, F., Potvin, C., Jansa, J. & Scherer-Lorenzen, M. Is tree diversity an important driver for phosphorus and nitrogen acquisition of a young tropical plantation? For. Ecol. Manag. 260, 1424–1433 (2010).

    Article 

    Google Scholar
     

  • Régnière, J., St-Amant, R. & Béchard, A. BioSIM 10 User’s manual. Report No. LAU-X-137E (Natural Resources Canada, Laurentian Forestry Centre, 2014).

  • Hogg, E. H. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agr. For. Meteorol. 84, 115–122 (1997).

    Article 

    Google Scholar
     

  • Senici, D., Chen, H. Y. H., Bergeron, Y. & Cyr, D. Spatiotemporal variations of fire frequency in central boreal forest. Ecosystems 13, 1227–1238 (2010).

    Article 

    Google Scholar
     

  • Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article 

    Google Scholar
     

  • Oberski, D. lavaan.survey: an R package for complex survey analysis of structural equation models. J. Stat. Softw. 57, 1–27 (2014).

    Article 

    Google Scholar
     

  • Kenny, D. A., Kaniskan, B. & McCoach, D. B. The performance of RMSEA in models with small degrees of freedom. Sociol. Methods Res. 44, 486–507 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Source link