May 29, 2024

Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion – Nature

  • 1.

    Gruosso, T. et al. Spatially distinct tumor immune microenvironments stratify triple-negative breast cancers. J. Clin. Invest. 129, 1785–1800 (2019).

    Article 

    Google Scholar
     

  • 2.

    Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 21, 217–238 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Bejarano, L., Jordao, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Chen, Y. et al. Type I collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell 39, 548–565 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Leitinger, B. Discoidin domain receptor functions in physiological and pathological conditions. Int. Rev. Cell Mol. Biol. 310, 39–87 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Valiathan, R. R., Marco, M., Leitinger, B., Kleer, C. G. & Fridman, R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 31, 295–321 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Hidalgo-Carcedo, C. et al. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat. Cell Biol. 13, 49–58 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Gao, H. et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell 166, 47–62 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Edwards, D. N. et al. Selective glutamine metabolism inhibition in tumor cells improves anti-tumor T lymphocyte activity in triple-negative breast cancer. J Clin. Invest. 131, e140100 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Jimenez-Sanchez, A., Cast, O. & Miller, M. L. Comprehensive benchmarking and integration of tumor microenvironment cell estimation methods. Cancer Res. 79, 6238–6246 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Vogel, W. F., Aszodi, A., Alves, F. & Pawson, T. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol. Cell. Biol. 21, 2906–2917 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Takai, K. et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 32, 244–257 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Carafoli, F. et al. Structure of the discoidin domain receptor 1 extracellular region bound to an inhibitory Fab fragment reveals features important for signaling. Structure 20, 688–697 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Vogel, W. F. Ligand-induced shedding of discoidin domain receptor 1. FEBS Lett. 514, 175–180 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Agarwal, G., Mihai, C. & Iscru, D. F. Interaction of discoidin domain receptor 1 with collagen type 1. J. Mol. Biol. 367, 443–455 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Ruggeri, J. M. et al. Discoidin domain receptor 1 (DDR1) is necessary for tissue homeostasis in pancreatic injury and pathogenesis of pancreatic ductal adenocarcinoma. Am. J. Pathol. 190, 1735–1751 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Ambrogio, C. et al. Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat. Med. 22, 270–277 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Cell. Invest. 122, 899–910 (2021).

  • 20.

    Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

  • 21.

    Ray, A. & Provenzano, P. P. Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix architecture. Curr. Opin. Cell Biol. 72, 63–71 (2021).

  • 22.

    Tomko, L. A. et al. Targeted matrisome analysis identifies thrombospondin-2 and tenascin-C in aligned collagen stroma from invasive breast carcinoma. Sci. Rep. 8, 12941 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Dunlap, S. M. et al. Dietary energy balance modulates epithelial-to-mesenchymal transition and tumor progression in murine claudin-low and basal-like mammary tumor models. Cancer Prev. Res. 5, 930–942 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).

    Article 

    Google Scholar
     

  • 26.

    Fougner, C., Bergholtz, H., Norum, J. H. & Sorlie, T. Re-definition of claudin-low as a breast cancer phenotype. Nat. Commun. 11, 1787 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article 

    Google Scholar
     

  • 28.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 

    Google Scholar
     

  • 29.

    Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists. Nucleic Acids Res. 47, W191–W198 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48, W509–W514 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Erikson, A., Ortegren, J., Hompland, T., de Lange Davies, C. & Lindgren, M. Quantification of the second-order nonlinear susceptibility of collagen I using a laser scanning microscope. J. Biomed. Opt. 12, 044002 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Wu, B. et al. PPARγ inhibition boosts efficacy of immune checkpoint immunotherapy against murine melanoma in a sexually dimorphic manner. Int. J. Biol. Sci. 16, 1526–1535 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Meng, W. et al. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells. MAbs 7, 707–718 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Gui, X. et al. Disrupting LILRB4/APOE interaction by an efficacious humanized antibody reverses T-cell suppression and blocks AML development. Cancer Immunol. Res. 7, 1244–1257 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Source link