May 6, 2024
Turbulent cold flows gave birth to the first quasars – Nature

Turbulent cold flows gave birth to the first quasars – Nature

  • Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6. Astron. J. 125, 1649–1659 (2003).

    ADS 

    Google Scholar
     

  • Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Volonteri, M. The formation and evolution of massive black holes. Science 337, 544 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. A luminous quasar at redshift 7.642. Astrophys. J. Lett. 907, L1 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Tenneti, A., Di Matteo, T., Croft, R., Garcia, T. & Feng, Y. The descendants of the first quasars in the BlueTides simulation. Mon. Not. Royal Astron. Soc. 474, 597–603 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Smidt, J., Whalen, D. J., Johnson, J. L., Surace, M. & Li, H. Radiation hydrodynamical simulations of the first quasars. Astrophys. J. 865, 126 (2018).

    ADS 

    Google Scholar
     

  • Huang, K.-W., Di Matteo, T., Bhowmick, A. K., Feng, Y. & Ma, C.-P. BLUETIDES simulation: establishing black hole–galaxy relations at high redshift. Mon. Not. Royal Astron. Soc. 478, 5063–5073 (2018).

    ADS 

    Google Scholar
     

  • Zhu, Q. et al. The formation of the first quasars. I. The black hole seeds, accretion and feedback models. Preprint at https://arxiv.org/abs/2012.01458 (2020).

  • Lupi, A., Haiman, Z. & Volonteri, M. Forming massive seed black holes in high-redshift quasar host progenitors. Mon. Not. Royal Astron. Soc. 503, 5046–5060 (2021) .

    ADS 
    CAS 

    Google Scholar
     

  • Alexander, T. & Natarajan, P. Rapid growth of seed black holes in the early universe by supra-exponential accretion. Science 345, 1330–1333 (2014) .

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Latif, M. A., Bovino, S., Grassi, T., Schleicher, D. R. G. & Spaans, M. How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes. Mon. Not. Royal Astron. Soc. 446, 3163–3177 (2015) .

    ADS 
    CAS 

    Google Scholar
     

  • Hirano, S., Hosokawa, T., Yoshida, N. & Kuiper, R. Supersonic gas streams enhance the formation of massive black holes in the early universe. Science 357, 1375–1378 (2017) .

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Woods, T. E., Heger, A., Whalen, D. J., Haemmerlé, L. & Klessen, R. S. On the maximum mass of accreting primordial supermassive stars. Astrophys. J. 842, L6 (2017) .

    ADS 

    Google Scholar
     

  • Woods, T. E., Patrick, S., Elford, J. S., Whalen, D. J. & Heger, A. On the evolution of supermassive primordial stars in cosmological flows. Astrophys. J. 915, 110 (2021) .

    ADS 
    CAS 

    Google Scholar
     

  • Feng, Y., Di Matteo, T., Croft, R. & Khandai, N. High-redshift supermassive black holes: accretion through cold flows. Mon. Not. Royal Astron. Soc. 440, 1865–1879 (2014) .

    ADS 

    Google Scholar
     

  • Lupi, A. et al. High-redshift quasars and their host galaxies – I. Kinematical and dynamical properties and their tracers. Mon. Not. Royal Astron. Soc. 488, 4004–4022 (2019) .

    ADS 
    CAS 

    Google Scholar
     

  • Valentini, M., Gallerani, S. & Ferrara, A. Host galaxies of high-redshift quasars: SMBH growth and feedback. Mon. Not. Royal Astron. Soc. 507, 1–26 (2021) .

    ADS 

    Google Scholar
     

  • Li, Y. et al. Formation of z ~ 6 quasars from hierarchical galaxy mergers. Astrophys. J. 665, 187–208 (2007) .

    ADS 

    Google Scholar
     

  • Wise, J. H. et al. Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature 566, 85–88 (2019) .

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bromm, V. & Larson, R. B. The first stars. Ann. Rev. Astron. Astrophys. 42, 79–118 (2004) .

    ADS 
    CAS 

    Google Scholar
     

  • Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. Royal Astron. Soc. 371, 1813–1823 (2006) .

    ADS 

    Google Scholar
     

  • Regan, J. A. & Haehnelt, M. G. Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures 10 000 K. Mon. Not. Royal Astron. Soc. 396, 343–353 (2009) .

    ADS 

    Google Scholar
     

  • Patrick, S. J., Whalen, D. J., Elford, J. S. & Latif, M. A. The collapse of atomically-cooled primordial haloes. I. High Lyman–Werner backgrounds. Preprint at https://arxiv.org/abs/2012.11612 (2020).

  • Surace, M. et al. On the detection of supermassive primordial stars. Astrophys. J. 869, L39 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Whalen, D. J. et al. Finding direct-collapse black holes at birth. Astrophys. J. 897, L16 (2020) .

    ADS 

    Google Scholar
     

  • Latif, M. A., Khochfar, S., Schleicher, D. & Whalen, D. J. Radiation hydrodynamical simulations of the birth of intermediate-mass black holes in the first galaxies. Mon. Not. Royal Astron. Soc. 508, 1756–1767 (2021) .

    ADS 

    Google Scholar
     

  • Agarwal, B., Smith, B., Glover, S., Natarajan, P. & Khochfar, S. New constraints on direct collapse black hole formation in the early Universe. Mon. Not. Royal Astron. Soc. 459, 4209–4217 (2016) .

    ADS 
    CAS 

    Google Scholar
     

  • Valiante, R., Agarwal, B., Habouzit, M. & Pezzulli, E. On the formation of the first quasars. Publ. Astron. Soc. Aust. 34, e031 (2017) .

    ADS 

    Google Scholar
     

  • Di Matteo, T., Croft, R. A. C., Feng, Y., Waters, D. & Wilkins, S. The origin of the mostmassive black holes at high-z: BlueTides and the next quasar frontier. Mon. Not. Royal Astron. Soc. 467, 4243–4251 (2017) .

    ADS 
    CAS 

    Google Scholar
     

  • Bryan, G. L. et al. ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. Ser. 211, 19 (2014).

    ADS 

    Google Scholar
     

  • Efstathiou, G., Davis, M., White, S. D. M. & Frenk, C. S. Numerical techniques for large cosmological N-body simulations. Astrophys. J. Suppl. Ser. 57, 241–260 (1985).

    ADS 

    Google Scholar
     

  • Couchman, H. M. P. Mesh-refined P3M – a fast adaptive N-body algorithm. Astrophys. J. 368, L23–L26 (1991).

    ADS 

    Google Scholar
     

  • Anninos, P., Zhang, Y., Abel, T. & Norman, M. L. Cosmological hydrodynamics with multi-species chemistry and nonequilibrium ionization and cooling. New Astron. 2, 209–224 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Woodward, P. & Colella, P. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Bryan, G. L., Norman, M. L., Stone, J. M., Cen, R. & Ostriker, J. P. A piecewise parabolic method for cosmological hydrodynamics. Comput. Phys. Commun. 89, 149–168 (1995).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Toro, E. F., Spruce, M. & Speares, W. Restoration of the contact surface in the HLL–Riemann solver. Shock Waves 4, 25–34 (1994).

    ADS 
    MATH 

    Google Scholar
     

  • Glover, S. C. O. & Abel, T. Uncertainties in H2 and HD chemistry and cooling and their role in early structure formation. Mon. Not. Royal Astron. Soc. 388, 1627–1651 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Ripamonti, E. & Abel, T. Fragmentation and the formation of primordial protostars: the possible role of collision-induced emission. Mon. Not. Royal Astron. Soc. 348, 1019–1034 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe – I. An improved chemical model. Mon. Not. Royal Astron. Soc. 451, 2082–2096 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe – II. Impact of rate coefficient uncertainties. Mon. Not. Royal Astron. Soc. 453, 2901–2918 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Hahn, O. & Abel, T. Multi-scale initial conditions for cosmological simulations. Mon. Not. Royal Astron. Soc. 415, 2101–2121 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).


    Google Scholar
     

  • Khandai, N., Feng, Y., DeGraf, C., Di Matteo, T. & Croft, R. A. C. The formation of galaxies hosting z 6 quasars. Mon. Not. Royal Astron. Soc. 423, 2397–2406 (2012).

    ADS 

    Google Scholar
     

  • Trenti, M., Santos, M. R. & Stiavelli, M. Where can we really find the first stars’ remnants today? Astrophys. J. 687, 1–6 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Behroozi, P. S., Wechsler, R. H. & Wu, H.-Y. The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores. Astrophys. J. 762, 109 (2013).

    ADS 

    Google Scholar
     

  • Wise, J. H. Enzo-MRP-music. GitHub https://github.com/jwise77/enzo-mrp-music (2020).

  • Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R. & Klessen, R. S. A new JeansrResolution criterion for (M)HD simulations of self-gravitating gas: application to magnetic field amplification by gravity-driven turbulence. Astrophys. J. 731, 62 (2011).

    ADS 

    Google Scholar
     

  • Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. Black hole formation in the early Universe. Mon. Not. Royal Astron. Soc. 433, 1607–1618 (2013).

    ADS 

    Google Scholar
     

  • Hennebelle, P. & Chabrier, G. Analytical theory for the initial mass function: CO clumps and prestellar cores. Astrophys. J. 684, 395–410 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Federrath, C. The turbulent formation of stars. Phys. Today 71, 38–42 (June, 2018).

    CAS 

    Google Scholar
     

  • Stacy, A., Bromm, V. & Loeb, A. Rotation speed of the first stars. Mon. Not. Royal Astron. Soc. 413, 543–553 (2011).

    ADS 

    Google Scholar
     

  • Turk, M. J. et al. yt: a multi-code analysis toolkit for astrophysical simulation data. Astrophys. J. Suppl. Ser. 192, 9 (2011).

    ADS 

    Google Scholar
     

  • Machacek, M. E., Bryan, G. L. & Abel, T. Simulations of pregalactic structure formation with radiative feedback. Astrophys. J. 548, 509–521 (2003).

    ADS 

    Google Scholar
     

  • Greif, T. H. et al. Simulations on a moving mesh: the clustered formation of Population III protostars. Astrophys. J. 737, 75 (2011).

    ADS 

    Google Scholar
     

  • Becerra, F., Greif, T. H., Springel, V. & Hernquist, L. E. Formation of massive protostars in atomic cooling haloes. Mon. Not. Royal Astron. Soc. 446, 2380–2393 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Becerra, F., Marinacci, F., Bromm, V. & Hernquist, L. E. Assembly of supermassive black hole seeds. Mon. Not. Royal Astron. Soc. 480, 5029–5045 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Hosokawa, T. et al. Formation of massive primordial stars: intermittent UV feedback with episodic mass accretion. Astrophys. J. 824, 119 (2016).

    ADS 

    Google Scholar
     

  • Latif, M. A. & Schleicher, D. R. G. Magnetic fields in primordial accretion disks. Astron. Astrophys. 585, A151 (2016).

    ADS 

    Google Scholar
     

  • Inayoshi, K. & Haiman, Z. Does disc fragmentation prevent the formation of supermassive stars in protogalaxies? Mon. Not. Royal Astron. Soc. 445, 1549–1557 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Regan, J. A. & Downes, T. P. Rise of the first supermassive stars. Mon. Not. Royal Astron. Soc. 478, 5037–5049 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Regan, J. A. et al. The formation of very massive stars in early galaxies and implications for intermediate mass black holes. Open J. Astrophys. 3, 15 (2020).


    Google Scholar
     

  • Latif, M. A., Whalen, D. & Khochfar, S. The birth mass function of Population III stars. Astrophys. J. 925, 28 (2022).

  • Krumholz, M. R., McKee, C. F. & Klein, R. I. Embedding Lagrangian sink particles in Eulerian grids. Astrophys. J. 611, 399–412 (2004).

    ADS 

    Google Scholar
     

  • Federrath, C., Banerjee, R., Clark, P. C. & Klessen, R. S. Modeling collapse and accretion in turbulent gas clouds: implementation and comparison of sink particles in AMR and SPH. Astrophys. J. 713, 269–290 (2010).

    ADS 

    Google Scholar
     

  • Latif, M. A., Schleicher, D. R. G., Schmidt, W. & Niemeyer, J. C. The characteristic black hole mass resulting from direct collapse in the early Universe. Mon. Not. Royal Astron. Soc. 436, 2989–2996 (2013).

    ADS 

    Google Scholar
     

  • Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010).

    ADS 

    Google Scholar
     

  • Machacek, M. E., Bryan, G. L. & Abel, T. Effects of a soft X-ray background on structure formation at high redshift. Mon. Not. Royal Astron. Soc. 338, 273–286 (2003).

    ADS 

    Google Scholar
     

  • Aykutalp, A., Wise, J. H., Spaans, M. & Meijerink, R. Songlines from direct collapse seed black holes: effects of X-rays on black hole growth and stellar populations. Astrophys. J. 797, 139 (2014).

    ADS 

    Google Scholar
     

  • Aykutalp, A., Barrow, K. S. S., Wise, J. H. & Johnson, J. L. Induced metal-free star formation around a massive black hole seed. Astrophys. J. 898, L53 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Chon, S. & Omukai, K. Supermassive star formation via super competitive accretion in slightly metal-enriched clouds. Mon. Not. Royal Astron. Soc. 494, 2851–2860 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Latif, M. A. & Volonteri, M. Assessing inflow rates in atomic cooling haloes: implications for direct collapse black holes. Mon. Not. Royal Astron. Soc. 452, 1026–1044 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    ADS 

    Google Scholar
     

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    ADS 

    Google Scholar
     

  • Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. Ser. 234, 34 (2018).

    ADS 

    Google Scholar
     

  • Henyey, L., Vardya, M. S. & Bodenheimer, P. Studies in stellar evolution. III. The calculation of model envelopes. Astrophys. J. 142, 841 (1965).

    ADS 

    Google Scholar
     

  • Rogers, F. J. & Nayfonov, A. Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064–1074 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Timmes, F. X. & Swesty, F. D. The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. Suppl. Ser. 126, 501–516 (2000).

    ADS 

    Google Scholar
     

  • Potekhin, A. Y. & Chabrier, G. Thermodynamic functions of dense plasmas: analytic approximations for astrophysical applications. Contrib. Plasma Phys. 50, 82–87 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Chandrasekhar, S. The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity. Astrophys. J. 140, 417 (1964).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A. & Whalen, D. J. On the rotation of supermassive stars. Astrophys. J. 853, L3 (2018).

    ADS 

    Google Scholar
     

  • Haemmerlé, L., Woods, T. E., Klessen, R. S., Heger, A. & Whalen, D. J. The evolution of supermassive Population III stars. Mon. Not. Royal Astron. Soc. 474, 2757–2773 (2018).

    ADS 

    Google Scholar
     

  • Haemmerlé, L. & Meynet, G. Magnetic braking of supermassive stars through winds. Astron. Astrophys. 623, L7 (2019).

    ADS 

    Google Scholar
     

  • Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Baraffe, I., Heger, A. & Woosley, S. E. On the stability of very massive primordial stars. Astrophys. J. 550, 890–896 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Hosokawa, T., Yorke, H. W., Inayoshi, K., Omukai, K. & Yoshida, N. Formation of primordial supermassive stars by rapid mass accretion. Astrophys. J. 778, 178 (2013).

    ADS 

    Google Scholar
     

  • Source link