April 27, 2024
Ultrafast structural changes direct the first molecular events of vision – Nature

Ultrafast structural changes direct the first molecular events of vision – Nature

  • Hofmann, K. P. et al. A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem. Sci. 34, 540–552 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. The first step in vision: femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Branden, G. & Neutze, R. Advances and challenges in time-resolved macromolecular crystallography. Science 373, eaba0954 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakmar, T. P., Franke, R. R. & Khorana, H. G. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl Acad. Sci. USA 86, 8309–8313 (1989).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Terakita, A. et al. Counterion displacement in the molecular evolution of the rhodopsin family. Nat. Struct. Mol. Biol. 11, 284–289 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kojima, K. et al. Evolutionary steps involving counterion displacement in a tunicate opsin. Proc. Natl Acad. Sci. USA 114, 6028–6033 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terakita, A., Yamashita, T. & Shichida, Y. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Proc. Natl Acad. Sci. USA 97, 14263–14267 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamichi, H. & Okada, T. Local peptide movement in the photoreaction intermediate of rhodopsin. Proc. Natl Acad. Sci. USA 103, 12729–12734 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamichi, H. & Okada, T. Crystallographic analysis of primary visual photochemistry. Angew. Chem. Int. Ed. Engl. 45, 4270–4273 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Standfuss, J. et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 471, 656–660 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choe, H. W., Park, J. H., Kim, Y. J. & Ernst, O. P. Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures. Neuropharmacology 60, 52–57 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deupi, X. et al. Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proc. Natl Acad. Sci. USA 109, 119–124 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gozem, S., Luk, H. L., Schapiro, I. & Olivucci, M. Theory and simulation of the ultrafast double-bond isomerization of biological chromophores. Chem. Rev. 117, 13502–13565 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ernst, O. P. et al. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 114, 126–163 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnedermann, C. et al. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision. Nat. Chem. 10, 449–455 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Quantum-classical simulations of rhodopsin reveal excited-state population splitting and its effects on quantum efficiency. Nat. Chem. 14, 441–449 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffat, K. The frontiers of time-resolved macromolecular crystallography: movies and chirped X-ray pulses. Faraday Discuss. 122, 65–77 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barends, T. R. et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350, 445–450 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tenboer, J. et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346, 1242–1246 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coquelle, N. et al. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nat. Chem. 10, 31–37 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Claesson, E. et al. The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser. eLife 9, e53514 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogly, P. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361, eaat0094 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Nass Kovacs, G. et al. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat. Commun. 10, 3177 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skopintsev, P. et al. Femtosecond-to-millisecond structural changes in a light-driven sodium pump. Nature 583, 314–318 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mous, S. et al. Dynamics and mechanism of a light-driven chloride pump. Science 375, 845–851 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dods, R. et al. Ultrafast structural changes within a photosynthetic reaction centre. Nature 589, 310–314 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aller, P. & Orville, A. M. Dynamic structural biology experiments at XFEL or synchrotron sources. Methods Mol. Biol. 2305, 203–228 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wranik, M.et al. Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography. Nat. Commun. 14, 903 (2023).

  • Grunbein, M. L. et al. Illumination guidelines for ultrafast pump-probe experiments by serial femtosecond crystallography. Nat. Methods 17, 681–684 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, R. J. D., Pare-Labrosse, O., Sarracini, A. & Besaw, J. E. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin in the multiphoton regime and biological relevance. Nat. Commun. 11, 1240 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barends, T. R. M. et al. Influence of pump laser fluence on ultrafast structural changes in myoglobin. Preprint at https://doi.org/10.1101/2022.11.22.517513 (2022).

  • Caffrey, M. Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu. Rev. Biophys. 38, 29–51 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fotiadis, D. et al. Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr. Opin. Struct. Biol. 16, 252–259 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues, J. R., Casadei C. M., Weinert T., Panneels, V. & Schertler, G. F. X. Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect. Acta Crystallogr. D 79, 224–233 (2023).

  • Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. Structure of bovine rhodopsin in a trigonal crystal form. J. Mol. Biol. 343, 1409–1438 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, E. C. et al. Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. Proc. Natl Acad. Sci. USA 100, 9262–9267 (2003).

    CAS 

    Google Scholar
     

  • Kimata, N. et al. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat. Commun. 7, 12683 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshizawa, T. & Shichida, Y. Low-temperature spectrophotometry of intermediates of rhodopsin. Methods Enzymol. 81, 333–354 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B. & Mathies, R. A. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310, 1006–1009 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakmar, T. P. Rhodopsin: a prototypical G protein-coupled receptor. Prog. Nucleic Acid Res. Mol. Biol. 59, 1–34 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, J. W., Szundi, I., Kazmi, M. A., Sakmar, T. P. & Kliger, D. S. Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants. Biochemistry 43, 12614–12621 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, C. et al. Thermal motion in protein crystals estimated using laser-generated ultrasound and Young’s modulus measurements. Acta Crystallogr. A 46, 315–320 (1990).

    Article 

    Google Scholar
     

  • Nagata, T., Oura, T., Terakita, A., Kandori, H. & Shichida, Y. Isomer-specific interaction of the retinal chromophore with threonine-118 in rhodopsin. J. Phys. Chem. 106, 1969–1975 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Yan, E. C. et al. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct. Biochemistry 43, 10867–10876 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warshel, A. Bicycle-pedal model for the first step in the vision process. Nature 260, 678–683 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Andruniow, T., Ferre, N. & Olivucci, M. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proc. Natl Acad. Sci. USA 101, 17908–17913 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frutos, L. M., Andruniow, T., Santoro, F., Ferre, N. & Olivucci, M. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc. Natl Acad. Sci. USA 104, 7764–7769 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, S., Kar, R. K., Borin, V. A. & Schapiro, I. Insight into the isomerization mechanism of retinal proteins from hybrid quantum mechanics/molecular mechanics simulations. WIREs Comput. Mol. Sci. 12, e1562 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Randall, C. E. et al. A new photolysis intermediate in artificial and native visual pigments. JACS 113, 3473–3485 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Birge, R. R. & Vought, B. W. Energetics of rhodopsin photobleaching: photocalorimetric studies of energy storage in early and later intermediates. Methods Enzymol. 315, 143–163 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karnik, S. S. & Khorana, H. G. Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J. Biol. Chem. 265, 17520–17524 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deupi, X. & Kobilka, B. K. Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology 25, 293–303 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatakrishnan, A. J. et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536, 484–487 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hauser, A. S. et al. GPCR activation mechanisms across classes and macro/microscales. Nat. Struct. Mol. Biol. 28, 879–888 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallace, A. C., Laskowski, R. A., Singh, J. & Thornton, J. M. Molecular recognition by proteins: protein-ligand interactions from a structural perspective. Biochem. Soc. Trans. 24, 280–284 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okada, T., Takeda, K. & Kouyama, T. Highly selective separation of rhodopsin from bovine rod outer segment membranes using combination of divalent cation and alkyl(thio)glucoside. Photochem. Photobiol. 67, 495–499 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, P. C. et al. Crystals of native and modified bovine rhodopsins and their heavy atom derivatives. J. Mol. Biol. 343, 1439–1450 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kissick, D. J., Wanapun, D. & Simpson, G. J. Second-order nonlinear optical imaging of chiral crystals. Ann. Rev. Anal. Chem. 4, 419–437 (2011).

    Article 
    CAS 

    Google Scholar
     

  • James, D. et al. Improving high viscosity extrusion of microcrystals for time-resolved serial femtosecond crystallography at X-ray lasers. J. Vis. Exp. 144, e59087 (2019).

  • Tono, K. et al. Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser. J. Synchrotron Radiat. 22, 532–537 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimazu, Y. et al. High-viscosity sample-injection device for serial femtosecond crystallography at atmospheric pressure. J. Appl. Crystallogr. 52, 1280–1288 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnlund, D. et al. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nat. Methods 11, 923–926 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leslie, A. G. The integration of macromolecular diffraction data. Acta Crystallogr. D 62, 48–57 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Duisenberg, A. Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Crystallogr. 25, 92–96 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Gevorkov, Y. et al. XGANDALF—extended gradient descent algorithm for lattice finding. Acta Crystallogr. A 75, 694–704 (2019).

    Article 
    CAS 

    Google Scholar
     

  • White, T. A. et al. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Cryst. 45, 335–334 (2012).

    Article 
    CAS 

    Google Scholar
     

  • White, T. A. Processing serial crystallography data with CrystFEL: a step-by-step guide. Acta Crystallogr. D 75, 219–233 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J., Kamtekar, S., Berman, A. J. & Steitz, T. A. Correction of X-ray intensities from single crystals containing lattice-translocation defects. Acta Crystallogr. D 61, 67–74 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebedev, A. A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D 68, 431–440 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article 

    Google Scholar
     

  • Wickstrand, C. et al. A tool for visualizing protein motions in time-resolved crystallography. Struct. Dyn. 7, 024701 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey, S. et al. Time-resolved serial femtosecond crystallography at the European XFEL. Nat. Methods 17, 73–78 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ballesteros, A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995).

  • Olsson, M. H., Sondergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

  • Sondergaard, C. R., Olsson, M. H., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

  • Case, D. A. et al. Amber 2021 (Univ. California, San Francisco, 2021).

  • Senn, H. M. & Thiel, W. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. Engl. 48, 1198–1229 (2009).

  • Field, M. J., Bash, P. A. & Karplus, M. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 11, 700–733 (1990).

  • Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory J. Comput. Chem. 32 1456–1465 (2011).

  • Dunning, T. H. Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

  • Weigend, F. Hartree–Fock exchange fitting basis sets for H to Rn. J. Comput. Chem. 29, 167–175 (2008).

  • Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

  • Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2012).

  • Sherwood, P. e al. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct.: THEOCHEM 632, 1–28 (2003).

  • Metz, S., Kästner, J., Sokol, A. A., Keal, T. W. & Sherwood, P. ChemShell—a modular software package for QM / MM simulations. WIREs Comput. Mol. Sci. 4, 101–110 (2014).

  • Hättig, C. Structure optimizations for excited states with correlated second-order methods: CC2 and ADC(2). Adv. Quantum Chem. 50, 37–60 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Furche, F. et al. Turbomole. WIREs Comput. Mol. Sci. 4, 91–100 (2014).

  • Rodriguez-Espigares, I. et al. GPCRmd uncovers the dynamics of the 3D-GPCRome. Nat. Methods 17, 777–787 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gowers, R. et al. MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations, https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html (2019).

  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aquila, A. et al. Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt. Express 20, 2706–2716 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorel, A., Schlichting, I. & Barends, T. R. M. Discerning best practices in XFEL-based biological crystallography—standards for nonstandard experiments. IUCrJ 8, 532–543 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakayama, T. A. & Khorana, H. G. Mapping of the amino acids in membrane-embedded helices that interact with the retinal chromophore in bovine rhodopsin. J. Biol. Chem. 266, 4269–4275 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varma, N. et al. Crystal structure of jumping spider rhodopsin-1 as a light sensitive GPCR. Proc. Natl Acad. Sci. USA 116, 14547–14556 (2019).

  • Source link