May 6, 2024
Uncovering the Ediacaran phosphorus cycle – Nature

Uncovering the Ediacaran phosphorus cycle – Nature

  • Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Algeo, T. J. & Ingall, E. Sedimentary Corg😛 ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 130–155 (2007).

    Article 

    Google Scholar
     

  • Slomp, C. P. & Van Cappellen, P. The global marine phosphorus cycle: sensitivity to oceanic circulation. Biogeosciences 4, 155–171 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Laakso, T. A., Sperling, E. A., Johnston, D. T. & Knoll, A. H. Ediacaran reorganization of the marine phosphorus cycle. Proc. Natl Acad. Sci. 117, 11961 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kipp, M. A. & Stüeken, E. E. Biomass recycling and Earth’s early phosphorus cycle. Sci. Adv. 3, eaao4795 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, F. et al. Extensive marine anoxia during the terminal Ediacaran Period. Sci. Adv. 4, eaan8983 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Global marine redox changes drove the rise and fall of the Ediacara biota. Geobiology 17, 594–610 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tostevin, R. et al. Uranium isotope evidence for an expansion of anoxia in terminal Ediacaran oceans. Earth Planet. Sci. Lett. 506, 104–112 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ruttenberg, K. C. in Treatise on Geochemistry Vol. 8 (eds Holland, H. D. & Turekian, K. K.) 585–643 (Pergamon, 2003).

  • Ingall, E. D., Bustin, R. M. & Van Cappellen, P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57, 303–316 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiong, Y. et al. Phosphorus cycling in Lake Cadagno, Switzerland: a low sulfate euxinic ocean analogue. Geochim. Cosmochim. Acta 251, 116–135 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alcott, L. J., Mills, B. J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366, 1333–1337 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, C., Nomosatryo, S., Crowe, S. A., Bjerrum, C. J. & Canefield, D. E. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 43, 135–138 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Derry, L. A. Causes and consequences of mid-Proterozoic anoxia. Geophys. Res. Lett. 42, 8538–8546 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Evans, S. D., Diamond, C. W., Droser, M. L. & Lyons, T. W. Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. Emerg. Top. Life Sci. 2, 223–233 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darroch, S. A. F., Smith, E. F., Laflamme, M. & Erwin, D. H. Ediacaran extinction and Cambrian explosion. Trends Ecol. Evol. 33, 653–663 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, W. et al. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology 46, 267–270 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, C. et al. Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology 15, 211–224 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufman, A. J., Corsetti, F. A. & Varni, M. A. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chem. Geol. 237, 47–63 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loyd, S. J. et al. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: insights from carbonates of northwestern Mexico and eastern California. Earth Planet. Sci. Lett. 339–340, 79–94 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Merdith, A. S. et al. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res. 50, 84–134 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Huang, K. et al. Interaction of Shibantan Biota and environment in the terminal Ediacaran ocean: evidence from I/(Ca+Mg) and sulfur isotopes. Precambrian Res. 379, 106814 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, R. et al. A great late Ediacaran ice age. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwad117 (2023).

  • Rooney, A. D. et al. Calibrating the coevolution of Ediacaran life and environment. Proc. Natl Acad. Sci. 117, 16824–16830 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dodd, M. S. et al. Development of carbonate-associated phosphate (CAP) as a proxy for reconstructing ancient ocean phosphate levels. Geochim. Cosmochim. Acta 301, 48–69 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shimura, T. et al. In-situ analyses of phosphorus contents of carbonate minerals: reconstruction of phosphorus contents of seawater from the Ediacaran to early Cambrian. Gondwana Res. 25, 1090–1107 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Swart, P. K. & Kennedy, M. J. Does the global stratigraphic reproducibility of δ13C in Neoproterozoic carbonates require a marine origin? A Pliocene–Pleistocene comparison. Geology 40, 87–90 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Busch, J. F. et al. Global and local drivers of the Ediacaran Shuram carbon isotope excursion. Earth Planet. Sci. Lett. 579, 117368 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Loyd, S. J., Berelson, W. M., Lyons, T. W., Hammond, D. E. & Corsetti, F. A. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate. Geochim. Cosmochim. Acta 78, 77–98 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cheng, M. et al. Barite in the Ediacaran Doushantuo Formation and its implications for marine carbon cycling during the largest negative carbon isotope excursion in Earth’s history. Precambrian Res. 368, 106485 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hardisty, D. S. et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet. Sci. Lett. 463, 159–170 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wood, R., Bowyer, F., Penny, A. & Poulton, S. W. Did anoxia terminate Ediacaran benthic communities? Evidence from early diagenesis. Precambrian Res. 313, 134–147 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shields, G. A. et al. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nat. Geosci. 12, 823–827 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. 100, 8124 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjerrum, C. J. & Canfield, D. E. Towards a quantitative understanding of the late Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. 108, 5542 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derry, L. A. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294, 152–162 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sawaki, Y. et al. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Res. 176, 46–64 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wei, G.-Y. et al. Long-term evolution of terrestrial inputs from the Ediacaran to early Cambrian: clues from Nd isotopes in shallow-marine carbonates, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109367 (2019).

    Article 

    Google Scholar
     

  • Li, C. et al. A stratified redox model for the Ediacaran ocean. Science 328, 80 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Canfield, D. E. et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321, 949 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Transient and stepwise ocean oxygenation during the late Ediacaran Shuram Excursion: insights from carbonate δ238U of northwestern Mexico. Precambrian Res. 344, 105741 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fan, H. et al. Constraining oceanic oxygenation during the Shuram excursion in South China using thallium isotopes. Geobiology 18, 348–365 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kendall, B. et al. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochim. Cosmochim. Acta 156, 173–193 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jin, C. et al. Highly heterogeneous “poikiloredox” conditions in the early Ediacaran Yangtze Sea. Precambrian Res. 311, 157–166 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alcott, L. J., Mills, B. J. W., Bekker, A. & Poulton, S. W. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling. Nat. Geosci. 15, 210–215 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cui, H. et al. Redox architecture of an Ediacaran ocean margin: integrated chemostratigraphic (δ13C–δ34S–87Sr/86Sr–Ce/Ce*) correlation of the Doushantuo Formation, South China. Chem. Geol. 405, 48–62 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bellefroid, E. J., Planavsky, N. J., Miller, N. R., Brand, U. & Wang, C. Case studies on the utility of sequential carbonate leaching for radiogenic strontium isotope analysis. Chem. Geol. 497, 88–99 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, F.-Y. et al. Development of an automatic column chromatography separation device for metal isotope analysis based on droplet counting. Anal. Chem. 93, 7196–7203 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barkan, Y., Paris, G., Webb, S. M., Adkins, J. F. & Halevy, I. Sulfur isotope fractionation between aqueous and carbonate-associated sulfate in abiotic calcite and aragonite. Geochim. Cosmochim. Acta 280, 317–339 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brüchert, V. et al. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim. Cosmochim. Acta 67, 4505–4518 (2003).

  • Source link