May 25, 2024
Uniting tensile ductility with ultrahigh strength via composition undulation – Nature

Uniting tensile ductility with ultrahigh strength via composition undulation – Nature

  • Ma, E. & Zhu, T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20, 323–331 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, Y. T. & Liao, X. Retaining ductility. Nat. Mater. 3, 351–352 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ovid’ko, I. A., Valiev, R. Z. & Zhu, Y. T. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater Sci. 94, 462–540 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hu, J., Shi, Y. N., Sauvage, X., Sha, G. & Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292–1296 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhou, X., Li, X. Y. & Lu, K. Enhanced thermal stability of nanograined metals below a critical grain size. Science 360, 526–530 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Karimpoor, A. A., Erb, U., Aust, K. T. & Palumbo, G. High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 49, 651–656 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Li, H. et al. Mapping the strain-rate and grain-size dependence of deformation behaviors in nanocrystalline face-centered-cubic Ni and Ni-based alloys. J. Alloys Compd. 709, 566–574 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Ma, E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663–668 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Yang, M. et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc. Natl Acad. Sci. USA 115, 7224–7229 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, E. Unusual dislocation behavior in high-entropy alloys. Scr. Mater. 181, 127–133 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Varvenne, C., Leyson, G. P. M., Ghazisaeidi, M. & Curtin, W. A. Solute strengthening in random alloys. Acta Mater. 124, 660–683 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ma, E. & Wu, X. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nat. Commun. 10, 5623 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Oh, H. S. et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat. Commun. 10, 2090 (2019).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sohn, S. S. et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv. Mater. 31, 1807142 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, R. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lei, Z. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Gonzalez, G., Sagarzazu, A., Bonyuet, D., D’Angelo, L. & Villalba, R. Solid state amorphisation in binary systems prepared by mechanical alloying. J. Alloys Compd. 483, 289–297 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Leyson, G. P. M., Hector, L. G. Jr & Curtin, W. A. Solute strengthening from first principles and application to aluminum alloys. Acta Mater. 60, 3873–3884 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • El-Sherik, A. M. & Erb, U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. J. Mater. Sci. 30, 5743–5749 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Erb, U. & El-Sherik, A. M. Nanocrystalline metals and process of producing the same. US patent 5,352,266 (1994).

  • Li, Q.-J., Sheng, H. & Ma, E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat. Commun. 10, 3563 (2019).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, B. & Curtin, W. A. Origin of high strength in the CoCrFeNiPd high-entropy alloy. Mater. Res. Lett. 8, 209–215 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Brooks, I., Palumbo, G., Hibbard, G. D., Wang, Z. R. & Erb, U. On the intrinsic ductility of electrodeposited nanocrystalline metals. J. Mater. Sci. 46, 7713–7724 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Daly, M. et al. Size effects in strengthening of NiCo multilayers with modulated microstructures. Mater. Sci. Eng. A 771, 138581 (2020).

    CAS 
    Article 

    Google Scholar
     

  • He, B. B. et al. High dislocation density–induced large ductility in deformed and partitioned steels. Science 357, 1029–1032 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jiang, S. et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460–464 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mori, H., Matsui, I., Takigawa, Y., Uesugi, T. & Higashi, K. Revealing the intrinsic ductility of electrodeposited nanocrystalline metals. Mater. Lett. 235, 224–227 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Pratama, K. & Motz, C. Strategies to achieve high strength and ductility of pulsed electrodeposited nanocrystalline Co–Cu by tuning the deposition parameters. Molecules 25, 5194 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Yoshida, S., Bhattacharjee, T., Bai, Y. & Tsuji, N. Friction stress and Hall–Petch relationship in CoCrNi equi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. Scr. Mater. 134, 33–36 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Wu, X. L., Zhu, Y. T., Wei, Y. G. & Wei, Q. Strong strain hardening in nanocrystalline nickel. Phys. Rev. Lett. 103, 205504 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Cao, Z. H., Wang, L., Hu, K., Huang, Y. L. & Meng, X. K. Microstructural evolution and its influence on creep and stress relaxation in nanocrystalline Ni. Acta Mater. 60, 6742–6754 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sun, Z. et al. Dynamic recovery in nanocrystalline Ni. Acta Mater. 91, 91–100 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Xu, X. D. et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi. Acta Mater. 144, 107–115 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Qi, L., Liu, C. Q., Chen, H. W. & Nie, J. F. Atomic scale characterization of complex stacking faults and their configurations in cold deformed Fe42Mn38Co10Cr10 high-entropy alloy. Acta Mater. 199, 649–668 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zeng, Y., Cai, X. & Koslowski, M. Effects of the stacking fault energy fluctuations on the strengthening of alloys. Acta Mater. 164, 1–11 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shih, M., Miao, J., Mills, M. & Ghazisaeidi, M. Stacking fault energy in concentrated alloys. Nat. Commun. 12, 3590 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, B., Yoshida, S., Tsuji, N. & Curtin, W. A. Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Nat. Commun. 11, 2507 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zong, H. et al. Percolated strain networks and universal scaling properties of strain glasses. Phys. Rev. Lett. 123, 015701 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rao, S. I., Woodward, C., Parthasarathy, T. A. & Senkov, O. Atomistic simulations of dislocation behavior in a model fcc multicomponent concentrated solid solution alloy. Acta Mater. 134, 188–194 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shenoy, V. B., Kukta, R. V. & Phillips, R. Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals. Phys. Rev. Lett. 84, 1491–1494 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wei, Q. Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J. Mater. Sci. 42, 1709–1727 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, Y. J., Mueller, J., Höppel, H. W., Göken, M. & Blum, W. Deformation kinetics of nanocrystalline nickel. Acta Mater. 55, 5708–5717 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lian, J. & Baudelet, B. Necking development and strain to fracture under uniaxial tension. Mater. Sci. Eng. 84, 157–162 (1986).

    Article 

    Google Scholar
     

  • Ma, C., Wang, S. C. & Walsh, F. C. Electrodeposition of nanocrystalline nickel–cobalt binary alloy coatings: a review. Trans. Inst. Met. Finish. 93, 104–112 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Sang, X., Oni, A. A. & LeBeau, J. M. Atom column indexing: atomic resolution image analysis through a matrix representation. Microsc. Microanal. 20, 1764–1771 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Niu, C. et al. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl. Phys. Lett. 106, 161906 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Miller, M. K. Atom Probe Tomography: Analysis at the Atomic Level (Springer Science & Business Media, 2012).

  • Ungár, T., Dragomir, I., Révész, Á. & Borbély, A. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice. J. Appl. Cryst. 32, 992–1002 (1999).

    Article 

    Google Scholar
     

  • Wu, Z., Bei, H., Pharr, G. M. & George, E. P. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, Y. Y. & Nieh, T. G. Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys. Intermetallics 86, 45–50 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Hall, E. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Lond. B 64, 747 (1951).

    ADS 
    Article 

    Google Scholar
     

  • Petch, N. The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).

    CAS 

    Google Scholar
     

  • Courtney, T. H. Mechanical Behavior of Materials (Waveland Press, 2005).

  • Wang, Y. M. et al. Achieving large uniform tensile ductility in nanocrystalline metals. Phys. Rev. Lett. 105, 215502 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lian, J. S., Gu, C. D., Jiang, Q. & Jiang, Z. H. Strain rate sensitivity of face-centered-cubic nanocrystalline materials based on dislocation deformation. J. Appl. Phys. 99, 3 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y.-K., Jung, W.-S. & Lee, B.-J. Modified embedded-atom method interatomic potentials for the Ni–Co binary and the Ni–Al–Co ternary systems. Model. Simul. Mater. Sci. Eng. 23, 055004 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    ADS 
    Article 

    Google Scholar
     

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS 
    CAS 
    MATH 
    Article 

    Google Scholar
     

  • Source link