April 27, 2024
Universal equation of state for wave turbulence in a quantum gas – Nature

Universal equation of state for wave turbulence in a quantum gas – Nature

  • Landau, L. D. and Lifshitz, E. M. Statistical Physics Vol. 5 (Elsevier Science, 2013).

  • Cugliandolo, L. F., Kurchan, J. & Peliti, L. Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics. Phys. Rev. E 55, 3898 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & van Saarloos, W. (eds.) Dynamical Heterogeneities in Glasses, Colloids and Granular Media (Oxford Univ. Press, 2011).

  • Loi, D., Mossa, S. & Cugliandolo, L. F. Effective temperature of active matter. Phys. Rev. E 77, 051111 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Takatori, S. C. & Brady, J. F. Towards a thermodynamics of active matter. Phys. Rev. E 91, 032117 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ginot, F. et al. Nonequilibrium equation of state in suspensions of active colloids. Phys. Rev. X 5, 011004 (2015).

    CAS 

    Google Scholar
     

  • Fodor, E. et al. How far from equilibrium is active matter? Phys. Rev. Lett. 117, 038103 (2016).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Edwards, S. F. & McComb, W. D. Statistical mechanics far from equilibrium. J. Phys. A Gen. Phys. 2, 157 (1969).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Cardy, J., Falkovich, G., Gawędzki, K., Nazarenko, S. & Zaboronski, O. Non-equilibrium Statistical Mechanics and Turbulence (Cambridge Univ. Press, 2008).

  • Ruelle, D. P. Hydrodynamic turbulence as a problem in nonequilibrium statistical mechanics. Proc. Natl Acad. Sci. USA 109, 20344–20346 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picozzi, A. et al. Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Navon, N., Smith, R. P. & Hadzibabic, Z. Quantum gases in optical boxes. Nat. Phys. 17, 1334–1341 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zakharov, V. E., L’vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer, 1992).

  • Nazarenko, S. Wave Turbulence (Springer, 2011).

  • Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Navon, N. et al. Synthetic dissipation and cascade fluxes in a turbulent quantum gas. Science 366, 382–385 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Richardson, L. F. Weather Prediction by Numerical Process (Cambridge Univ. Press, 1922).

  • Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B. & Swift, R. N. Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: spectral slope and dimensionless spectral coefficient. J. Phys. Oceanogr. 30, 2753–2767 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Sorriso-Valvo, L. et al. Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghashghaie, S., Breymann, W., Peinke, J., Talkner, P. & Dodge, Y. Turbulent cascades in foreign exchange markets. Nature 381, 767–770 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk. SSSR 30, 301 (1941).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Grant, H. L., Stewart, R. W. & Moilliet, A. Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–268 (1962).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Sreenivasan, K. R. On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778–2784 (1995).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Eigen, C. et al. Observation of weak collapse in a Bose–Einstein condensate. Phys. Rev. X 6, 041058 (2016).


    Google Scholar
     

  • Chantesana, I., Pi neiro Orioli, A. & Gasenzer, T. Kinetic theory of nonthermal fixed points in a Bose gas. Phys. Rev. A 99, 043620 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, Y., Semisalov, B., Krstulovic, G. & Nazarenko, S. Direct and inverse cascades in turbulent Bose–Einstein condensates. Phys. Rev. Lett. 130, 133001 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Etrych, J. et al. Pinpointing Feshbach resonances and testing Efimov universalities in 39K. Phys. Rev. Res. 5, 013174 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gałka, M. et al. Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett. 129, 190402 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Many-body decay of the gapped lowest excitation of a Bose-Einstein condensate. Phys. Rev. Lett. 126, 060402 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sano, Y., Navon, N. & Tsubota, M. Emergent isotropy of a wave-turbulent cascade in the Gross–Pitaevskii model. EPL 140, 66002 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tsatsos, M. C. et al. Quantum turbulence in trapped atomic Bose–Einstein condensates. Phys. Rep. 622, 1–52 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Tsubota, M., Fujimoto, K. & Yui, S. Numerical studies of quantum turbulence. J. Low. Temp. Phys. 188, 119–189 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Middleton-Spencer, H. A. J. et al. Evidence of strong quantum turbulence in Bose-Einstein condensates. Preprint at https://arxiv.org/abs/2204.08544 (2022).

  • Barenghi, C. F., Middleton-Spencer, H. A. J., Galantucci, L. & Parker, N. G. Types of quantum turbulence. Preprint at https://arxiv.org/abs/2302.05221 (2023).

  • Micha, R. & Tkachev, I. I. Turbulent thermalization. Phys. Rev. D 70, 043538 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Berges, J., Rothkopf, A. & Schmidt, J. Nonthermal fixed points: effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett. 101, 041603 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Prüfer, M. et al. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature 563, 217–220 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Erne, S., Bücker, R., Gasenzer, T., Berges, J. & Schmiedmayer, J. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563, 225–229 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Glidden, J. A. P. et al. Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys. 17, 457–461 (2021).

    Article 
    CAS 

    Google Scholar
     

  • García-Orozco, A. D. et al. Universal dynamics of a turbulent superfluid Bose gas. Phys. Rev. A 106, 023314 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Batchelor, G. K., Townsend, A. A. & Jeffreys, H. The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A 199, 238–255 (1949).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Newell, A. C., Nazarenko, S. & Biven, L. Wave turbulence and intermittency. Phys. D Nonlinear Phenom. 152–153, 520–550 (2001).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Source link