May 19, 2024

Unusual width of the superconducting transition in a hydride – Nature

  • 1.

    Snider, E. et al. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373–377 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Tinkham, M. Introduction to Superconductivity (McGraw Hill, 1996).

  • 3.

    Pickard, C. J., Errea, I. & Eremets, M. I. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Kim, Y. B., Hempstead, C. F. & Strnad, A. R. Flux-flow resistance in type-II superconductors. Phys. Rev. 139, A1163 (1965).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Anderson, P. W. & Kim, Y. B. Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev. Mod. Phys. 36, 39 (1964).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Fisher, D. S., Fisher, M. P. A. & Huse, D. A. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130–159 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Canfield, P. C., Bud’ko, S. L. & Finnemore, D. K. An overview of the basic physical properties of MgB2. Physica C 385, 1–7 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Gupta, A. et al. Resistivity broadening, upper critical fields and irreversibility lines in bulk PbMo6S8 and SnMo6S8 Chevrel phase superconductors. Physica C 235–240, 2541–2542 (1994).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Guo, J. et al. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Natl Acad. Sci. USA 114, 13144–13147 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Kumar, D. et al. Flux pinning and improved critical current density in superconducting boron doped diamond films. J. Phys. Commun. 2, 045015 (2018).

    Article 

    Google Scholar
     

  • 11.

    Eisaki, H. et al. Competition between magnetism and superconductivity in rare-earth nickel boride carbides. Phys. Rev. B 50, 647(R) (1994).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Iye, Y. et al. The anisotropic superconductivity of RBa2Cu3O7−x (R: Y, Gd and Ho) single crystals. Physica C 153–155, 26–31 (1988).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Kitazawa, K. et al. Broadening mechanism of resistive transition under magnetic field in single crystalline (La1−xSrx)2CuO4. Jpn. J. Appl. Phys. 28, L555 (1989).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Ito, H. et al. Resistive superconducting transition of κ-type BEDT-TTF organic superconductors in a magnetic field. J. Supercond. 7, 667–669 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx.Nature 453, 761–762 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Jung, S.-G. et al. Influence of carbon-ion irradiation on the superconducting critical properties of MgB2 thin films. Supercond. Sci. Technol. 32, 025006 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Song, J., Fabbris, G., Bi, W., Haskel, D. & Schilling, J. S. Pressure-induced superconductivity in elemental ytterbium metal. Phys. Rev. Lett. 121, 037004 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Source link