April 27, 2024
A Feshbach resonance in collisions between triplet ground-state molecules – Nature

A Feshbach resonance in collisions between triplet ground-state molecules – Nature

  • Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X.-Y. et al. Magnetic Feshbach resonances in collisions of 23Na40K with 40K. New J. Phys. 23, 115010 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Son, H. et al. Control of reactive collisions by quantum interference. Science 375, 1006–1010 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Knoop, S. et al. Observation of an Efimov-like trimer resonance in ultracold atom–dimer scattering. Nat. Phys. 5, 227–230 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zenesini, A. et al. Resonant atom-dimer collisions in cesium: testing universality at positive scattering lengths. Phys. Rev. A 90, 022704 (2014).

    Article 

    Google Scholar
     

  • Chin, C. et al. Observation of Feshbach-like resonances in collisions between ultracold molecules. Phys. Rev. Lett. 94, 123201 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F., Ye, X., Guo, M., Blume, D. & Wang, D. Observation of resonant scattering between ultracold heteronuclear Feshbach molecules. Phys. Rev. A 100, 042706 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ferlaino, F. et al. Collisions of ultracold trapped cesium Feshbach molecules. Laser Phys. 20, 23–31 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mayle, M., Ruzic, B. P. & Bohn, J. L. Statistical aspects of ultracold resonant scattering. Phys. Rev. A 85, 062712 (2012).

    Article 

    Google Scholar
     

  • Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    Article 

    Google Scholar
     

  • Christianen, A., Karman, T. & Groenenboom, G. C. Quasiclassical method for calculating the density of states of ultracold collision complexes. Phys. Rev. A 100, 032708 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. & Ni, K.-K. Bimolecular chemistry in the ultracold regime. Annu. Rev. Phys. Chem. 73, 73–96 (2022).

    Article 

    Google Scholar
     

  • Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Balakrishnan, N. Perspective: Ultracold molecules and the dawn of cold controlled chemistry. J. Chem. Phys 145, 150901 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).

    Article 

    Google Scholar
     

  • Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Herrera, F., Cao, Y., Kais, S. & Whaley, K. B. Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing. New J. Phys. 16, 075001 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Hughes, M. et al. Robust entangling gate for polar molecules using magnetic and microwave fields. Phys. Rev. A 101, 062308 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rvachov, T. M. et al. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119, 143001 (2017).

    Article 

    Google Scholar
     

  • Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Winkler, K., Lang, F., Thalhammer, G., vd Straten, P., Grimm, R. & Denschlag, J. H. Coherent optical transfer of Feshbach molecules to a lower vibrational state. Phys. Rev. Lett. 98, 043201 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Danzl, J. G. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat. Phys. 6, 265–270 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic Na23K40 molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    Article 

    Google Scholar
     

  • Danzl, J. G. et al. Quantum gas of deeply bound ground state molecules. Science 321, 1062–1066 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Krzyzewski, S. P., Akin, T. G., Dizikes, J., Morrison, M. A. & Abraham, E. R. I. Observation of deeply bound 85Rb2 vibrational levels using Feshbach optimized photoassociation. Phys. Rev. A 92, 062714 (2015).

    Article 

    Google Scholar
     

  • Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Anderegg, L. et al. Laser cooling of optically trapped molecules. Nat. Phys. 14, 890–893 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132–1136 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gregory, P., Blackmore, J., Bromley, S. & Cornish, S. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gregory, P. D. et al. Molecule–molecule and atom–molecule collisions with ultracold RbCs molecules. New J. Phys. 23, 125004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gersema, P. et al. Probing photoinduced two-body loss of ultracold nonreactive bosonic 23Na87Rb and 23Na39K molecules. Phys. Rev. Lett. 127, 163401 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bause, R. et al. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Res. 3, 033013 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

    Article 

    Google Scholar
     

  • Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wigner, E. P. On the behavior of cross sections near thresholds. Phys. Rev. 73, 1002 (1948).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Derevianko, A., Babb, J. & Dalgarno, A. High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers. Phys. Rev. A 63, 052704 (2001).

    Article 

    Google Scholar
     

  • Julienne, P. S., Hanna, T. M. & Idziaszek, Z. Universal ultracold collision rates for polar molecules of two alkali-metal atoms. Phys. Chem. Chem. Phys. 13, 19114–19124 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Idziaszek, Z., Jachymski, K. & Julienne, P. S. Reactive collisions in confined geometries. New J. Phys. 17, 035007 (2015).

    Article 

    Google Scholar
     

  • Chevy, F. et al. Resonant scattering properties close to a p-wave Feshbach resonance. Phys. Rev. A 71, 062710 (2005).

    Article 

    Google Scholar
     

  • Tomza, M., Madison, K. W., Moszynski, R. & Krems, R. V. Chemical reactions of ultracold alkali-metal dimers in the lowest-energy 3Σ state. Phys. Rev. A 88, 050701 (2013).

    Article 

    Google Scholar
     

  • Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    Article 
    CAS 

    Google Scholar
     

  • De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article 

    Google Scholar
     

  • Mies, F. H., Williams, C. J., Julienne, P. S. & Krauss, M. Estimating bounds on collisional relaxation rates of spin-polarized 87Rb atoms at ultracold temperatures. J. Res. Natl Inst. Stand. Technol. 101, 521 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Krems, R. & Dalgarno, A. Quantum-mechanical theory of atom-molecule and molecular collisions in a magnetic field: spin depolarization. J. Chem. Phys. 120, 2296–2307 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Tscherbul, T., Suleimanov, Y. V., Aquilanti, V. & Krems, R. Magnetic field modification of ultracold molecule–molecule collisions. New J. Phys. 11, 055021 (2009).

    Article 

    Google Scholar
     

  • Stone, A. The Theory of Intermolecular Forces 2nd edn, Ch. 3 (Oxford Univ. Press, 2013).

  • Gronowski, M., Koza, A. M. & Tomza, M. Ab initio properties of the NaLi molecule in the a3Σ+ electronic state. Phys. Rev. A 102, 020801 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Harrison, J. F. & Lawson, D. B. Quadrupole moments of the alkali dimers, Li2, Na2, and K2. Int. J. Quantum Chem. 102, 1087–1091 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Hermsmeier, R., Kłos, J., Kotochigova, S. & Tscherbul, T. V. Quantum spin state selectivity and magnetic tuning of ultracold chemical reactions of triplet alkali-metal dimers with alkali-metal atoms. Phys. Rev. Lett. 127, 103402 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ismail, N., Kores, C. C., Geskus, D. & Pollnau, M. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity. Opt. Express 24, 16366–16389 (2016).

    Article 

    Google Scholar
     

  • Friedrich, H. Theoretical Atomic Physics 4th edn (Springer, 2017).

  • Bai, Y.-P., Li, J.-L., Wang, G.-R. & Cong, S.-L. Model for investigating quantum reflection and quantum coherence in ultracold molecular collisions. Phys. Rev. A 100, 012705 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Source link