May 28, 2024

A nutrient-specific gut hormone arbitrates between courtship and feeding – Nature

  • Tinbergen, N. The Study of Instinct (Clarendon Press, 1951).

  • McFarland, D. J. Decision making in animals. Nature 269, 15–21 (1977).

    ADS 

    Google Scholar
     

  • Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).

  • Sutton, A. K. & Krashes, M. J. Integrating hunger with rival motivations. Trends Endocrinol. Metab. 31, 495–507 (2020).

    CAS 

    Google Scholar
     

  • Marella, S., Mann, K. & Scott, K. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73, 941–950 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton, G. J., Meek, T. H. & Schwartz, M. W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15, 367–378 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inagaki, H. K. et al. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148, 583–595 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjieconomou, D. et al. Enteric neurons increase maternal food intake during reproduction. Nature 587, 455–459 (2020).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karigo, T. et al. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 589, 258–263 (2021).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayless, D. W. et al. Limbic neurons shape sex recognition and social behavior in sexually naive males. Cell 176, 1190–1205.e20 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dickson, B. J. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322, 904–909 (2008).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Yamamoto, D., Sato, K. & Koganezawa, M. Neuroethology of male courtship in Drosophila: from the gene to behavior. J. Comp. Physiol. A 200, 251–264 (2014).


    Google Scholar
     

  • Zhang, S. X., Rogulja, D. & Crickmore, M. A. Dopaminergic circuitry underlying mating drive. Neuron 91, 168–181 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Piper, M. D. W. et al. A holidic medium for Drosophila melanogaster. Nat. Methods 11, 100–105 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheriyamkunnel, S. J. et al. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr. Biol. 31, 4231–4245.e4 (2021).

  • Lin, H.-H. et al. Hormonal modulation of pheromone detection enhances male courtship success. Neuron 90, 1272–1285 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, J. E., Wise, J. D., Benton, N. A., Brozek, J. M. & Keen-Rhinehart, E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm. Behav. 64, 702–728 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. The cellular diversity and transcription factor code of Drosophila enteroendocrine cells. Cell Rep. 29, 4172–4185.e5 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Hung, R.-J. et al. A cell atlas of the adult Drosophila midgut. Proc. Natl Acad. Sci. USA 117, 1514–1523 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veenstra, J. A. & Ida, T. More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2. Cell Tissue Res. 357, 607–621 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, J.-H. et al. A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut. FEBS Lett. 590, 493–500 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Bellen, H. J. et al. The BDGP Gene Disruption Project. Genetics 167, 761–781 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asahina, K. et al. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell 156, 221–235 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hergarden, A. C., Tayler, T. D. & Anderson, D. J. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl Acad. Sci. USA 109, 3967–3972 (2012).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clyne, J. D. & Miesenböck, G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354–363 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Jordt, S.-E. & Julius, D. Molecular basis for species-specific sensitivity to ‘hot’ chili peppers. Cell 108, 421–430 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, E. C. et al. A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J. Exp. Biol. 208, 1239–1246 (2005).

    CAS 

    Google Scholar
     

  • Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    CAS 

    Google Scholar
     

  • Tao, X. et al. Transcutical imaging with cellular and subcellular resolution. Biomed. Opt. Express 8, 1277–1289 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badre, N. H., Martin, M. E. & Cooper, R. L. The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp. Biochem. Physiol. A 140, 363–376 (2005).


    Google Scholar
     

  • Masuyama, K., Zhang, Y., Rao, Y. & Wang, J. W. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Q. et al. Excreta quantification (EX-Q) for longitudinal measurements of food intake in Drosophila. iScience 23, 100776 (2020).

    ADS 

    Google Scholar
     

  • Al-Anzi, B. et al. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 20, 969–978 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, L., Zhang, J. R., Tobe, S. & Lange, A. B. Proctolin: a possible releasing factor in the corpus cardiacum/corpus allatum of the locust. Peptides 27, 559–566 (2006).

    CAS 

    Google Scholar
     

  • Down, R. E., Matthews, H. J. & Audsley, N. Effects of Manduca sexta allatostatin and an analog on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut. Peptides 31, 489–497 (2010).

    CAS 

    Google Scholar
     

  • Gáliková, M., Dircksen, H. & Nässel, D. R. The thirsty fly: Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila. PLoS Genet. 14, e1007618 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, S. et al. Identification of a peptidergic pathway critical to satiety responses in Drosophila. Curr. Biol. 26, 814–820 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Scopelliti, A. et al. A neuronal relay mediates a nutrient responsive gut/fat body axis regulating energy homeostasis in adult Drosophila. Cell Metab. 29, 269–284.e10 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Söderberg, J. A. E., Carlsson, M. A. & Nässel, D. R. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. 3, 109 (2012).


    Google Scholar
     

  • Wu, Q. et al. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39, 147–161 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfeiffer, B. D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, R. et al. Amplification of Drosophila olfactory responses by a DEG/ENaC channel. Neuron 104, 947–959.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maslow, A. H. A theory of human motivation. Psychol. Rev. 50, 370–396 (1943).

  • Alhadeff, A. L. et al. A neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152.e15 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammell, T. E. Sleep state switching. Neuron 68, 1023–1042 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jourjine, N., Mullaney, B. C., Mann, K. & Scott, K. Coupled sensing of hunger and thirst signals balances sugar and water consumption. Cell 166, 855–866 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo, S. & Ueda, R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195, 715–721 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakai, T., Isono, K., Tomaru, M. & Oguma, Y. Light-affected male following behavior is involved in light-dependent mating in Drosophila melanogaster. Genes Genet. Syst. 72, 275–281 (1997).


    Google Scholar
     

  • Itskov, P. M. et al. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat. Commun. 5, 4560 (2014).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Veenstra, J. A., Agricola, H.-J. & Sellami, A. Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499–516 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Peabody, N. C. et al. Bursicon functions within the Drosophila CNS to modulate wing expansion behavior, hormone secretion, and cell death. J. Neurosci. 28, 14379–14391 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goda, T. et al. Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes Dev. 32, 140–155 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunst, M. et al. Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr. Biol. 24, 2652–2664 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Dorostkar, M. M., Dreosti, E., Odermatt, B. & Lagnado, L. Computational processing of optical measurements of neuronal and synaptic activity in networks. J. Neurosci. Methods 188, 141–150 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindsay, S. A., Lin, S. J. H. & Wasserman, S. A. Short-form bomanins mediate humoral immunity in Drosophila. J. Innate Immun. 10, 306–314 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J., Iyengar, A. & Wu, C.-F. Distinctions among electroconvulsion- and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: quantitative spike pattern analysis in Drosophila flight muscles. J. Neurogenet. 33, 125–142 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klassen, M. P. et al. Age-dependent diastolic heart failure in an in vivo Drosophila model. eLife 6, e20851 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dus, M. et al. Nutrient sensor in the brain directs the action of the brain–gut axis in Drosophila. Neuron 87, 139–151 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Branon, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H. High-throughput ethomics in large groups of Drosophila. Nat. Methods 6, 451–457 (2009).


    Google Scholar
     

  • Source link

  • Tinbergen, N. The Study of Instinct (Clarendon Press, 1951).

  • McFarland, D. J. Decision making in animals. Nature 269, 15–21 (1977).

    ADS 

    Google Scholar
     

  • Stearns, S. C. The Evolution of Life Histories (Oxford Univ. Press, 1992).

  • Sutton, A. K. & Krashes, M. J. Integrating hunger with rival motivations. Trends Endocrinol. Metab. 31, 495–507 (2020).

    CAS 

    Google Scholar
     

  • Marella, S., Mann, K. & Scott, K. Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73, 941–950 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton, G. J., Meek, T. H. & Schwartz, M. W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 15, 367–378 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inagaki, H. K. et al. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148, 583–595 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjieconomou, D. et al. Enteric neurons increase maternal food intake during reproduction. Nature 587, 455–459 (2020).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karigo, T. et al. Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 589, 258–263 (2021).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayless, D. W. et al. Limbic neurons shape sex recognition and social behavior in sexually naive males. Cell 176, 1190–1205.e20 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dickson, B. J. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322, 904–909 (2008).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Yamamoto, D., Sato, K. & Koganezawa, M. Neuroethology of male courtship in Drosophila: from the gene to behavior. J. Comp. Physiol. A 200, 251–264 (2014).


    Google Scholar
     

  • Zhang, S. X., Rogulja, D. & Crickmore, M. A. Dopaminergic circuitry underlying mating drive. Neuron 91, 168–181 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Piper, M. D. W. et al. A holidic medium for Drosophila melanogaster. Nat. Methods 11, 100–105 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheriyamkunnel, S. J. et al. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr. Biol. 31, 4231–4245.e4 (2021).

  • Lin, H.-H. et al. Hormonal modulation of pheromone detection enhances male courtship success. Neuron 90, 1272–1285 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, J. E., Wise, J. D., Benton, N. A., Brozek, J. M. & Keen-Rhinehart, E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm. Behav. 64, 702–728 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, X. et al. The cellular diversity and transcription factor code of Drosophila enteroendocrine cells. Cell Rep. 29, 4172–4185.e5 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Hung, R.-J. et al. A cell atlas of the adult Drosophila midgut. Proc. Natl Acad. Sci. USA 117, 1514–1523 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veenstra, J. A. & Ida, T. More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2. Cell Tissue Res. 357, 607–621 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, J.-H. et al. A subset of enteroendocrine cells is activated by amino acids in the Drosophila midgut. FEBS Lett. 590, 493–500 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Bellen, H. J. et al. The BDGP Gene Disruption Project. Genetics 167, 761–781 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asahina, K. et al. Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell 156, 221–235 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hergarden, A. C., Tayler, T. D. & Anderson, D. J. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proc. Natl Acad. Sci. USA 109, 3967–3972 (2012).

    CAS 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clyne, J. D. & Miesenböck, G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354–363 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Marella, S. et al. Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285–295 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Jordt, S.-E. & Julius, D. Molecular basis for species-specific sensitivity to ‘hot’ chili peppers. Cell 108, 421–430 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, E. C. et al. A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J. Exp. Biol. 208, 1239–1246 (2005).

    CAS 

    Google Scholar
     

  • Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    CAS 

    Google Scholar
     

  • Tao, X. et al. Transcutical imaging with cellular and subcellular resolution. Biomed. Opt. Express 8, 1277–1289 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badre, N. H., Martin, M. E. & Cooper, R. L. The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp. Biochem. Physiol. A 140, 363–376 (2005).


    Google Scholar
     

  • Masuyama, K., Zhang, Y., Rao, Y. & Wang, J. W. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J. Neurogenet. 26, 89–102 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Q. et al. Excreta quantification (EX-Q) for longitudinal measurements of food intake in Drosophila. iScience 23, 100776 (2020).

    ADS 

    Google Scholar
     

  • Al-Anzi, B. et al. The leucokinin pathway and its neurons regulate meal size in Drosophila. Curr. Biol. 20, 969–978 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, L., Zhang, J. R., Tobe, S. & Lange, A. B. Proctolin: a possible releasing factor in the corpus cardiacum/corpus allatum of the locust. Peptides 27, 559–566 (2006).

    CAS 

    Google Scholar
     

  • Down, R. E., Matthews, H. J. & Audsley, N. Effects of Manduca sexta allatostatin and an analog on the pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) and degradation by enzymes from the aphid gut. Peptides 31, 489–497 (2010).

    CAS 

    Google Scholar
     

  • Gáliková, M., Dircksen, H. & Nässel, D. R. The thirsty fly: Ion transport peptide (ITP) is a novel endocrine regulator of water homeostasis in Drosophila. PLoS Genet. 14, e1007618 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, S. et al. Identification of a peptidergic pathway critical to satiety responses in Drosophila. Curr. Biol. 26, 814–820 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Scopelliti, A. et al. A neuronal relay mediates a nutrient responsive gut/fat body axis regulating energy homeostasis in adult Drosophila. Cell Metab. 29, 269–284.e10 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Söderberg, J. A. E., Carlsson, M. A. & Nässel, D. R. Insulin-producing cells in the Drosophila brain also express satiety-inducing cholecystokinin-like peptide, drosulfakinin. Front. Endocrinol. 3, 109 (2012).


    Google Scholar
     

  • Wu, Q. et al. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39, 147–161 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfeiffer, B. D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, R. et al. Amplification of Drosophila olfactory responses by a DEG/ENaC channel. Neuron 104, 947–959.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maslow, A. H. A theory of human motivation. Psychol. Rev. 50, 370–396 (1943).

  • Alhadeff, A. L. et al. A neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152.e15 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J. & Scammell, T. E. Sleep state switching. Neuron 68, 1023–1042 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jourjine, N., Mullaney, B. C., Mann, K. & Scott, K. Coupled sensing of hunger and thirst signals balances sugar and water consumption. Cell 166, 855–866 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondo, S. & Ueda, R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195, 715–721 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakai, T., Isono, K., Tomaru, M. & Oguma, Y. Light-affected male following behavior is involved in light-dependent mating in Drosophila melanogaster. Genes Genet. Syst. 72, 275–281 (1997).


    Google Scholar
     

  • Itskov, P. M. et al. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila. Nat. Commun. 5, 4560 (2014).

    CAS 
    ADS 
    PubMed 

    Google Scholar
     

  • Veenstra, J. A., Agricola, H.-J. & Sellami, A. Regulatory peptides in fruit fly midgut. Cell Tissue Res. 334, 499–516 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Peabody, N. C. et al. Bursicon functions within the Drosophila CNS to modulate wing expansion behavior, hormone secretion, and cell death. J. Neurosci. 28, 14379–14391 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goda, T. et al. Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes Dev. 32, 140–155 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunst, M. et al. Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr. Biol. 24, 2652–2664 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Dorostkar, M. M., Dreosti, E., Odermatt, B. & Lagnado, L. Computational processing of optical measurements of neuronal and synaptic activity in networks. J. Neurosci. Methods 188, 141–150 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindsay, S. A., Lin, S. J. H. & Wasserman, S. A. Short-form bomanins mediate humoral immunity in Drosophila. J. Innate Immun. 10, 306–314 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J., Iyengar, A. & Wu, C.-F. Distinctions among electroconvulsion- and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: quantitative spike pattern analysis in Drosophila flight muscles. J. Neurogenet. 33, 125–142 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klassen, M. P. et al. Age-dependent diastolic heart failure in an in vivo Drosophila model. eLife 6, e20851 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dus, M. et al. Nutrient sensor in the brain directs the action of the brain–gut axis in Drosophila. Neuron 87, 139–151 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Branon, K., Robie, A. A., Bender, J., Perona, P. & Dickinson, M. H. High-throughput ethomics in large groups of Drosophila. Nat. Methods 6, 451–457 (2009).


    Google Scholar
     

  • Source link