May 6, 2024

Moving bar of light evokes vectorial spatial selectivity in the immobile rat hippocampus – Nature

  • Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    PubMed 

    Google Scholar
     

  • O’Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, 1978).

  • Muller, R. U. & Kubie, J. L. The firing of hippocampal place cells predicts the future position of freely moving rats. J. Neurosci. 9, 4101–4110 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehta, M. R. Neuronal dynamics of predictive coding. Neuroscience 7, 490–495 (2001).

    CAS 

    Google Scholar
     

  • Battaglia, F. P., Sutherland, G. R. & McNaughton, B. L. Local sensory cues and place cell directionality: additional evidence of prospective coding in the hippocampus. J. Neurosci. 24, 4541–4550 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Resnik, E., McFarland, J. M., Sprengel, R., Sakmann, B. & Mehta, M. R. The effects of GluA1 deletion on the hippocampal population code for position. J. Neurosci. 32, 8952–8968 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravassard, P. et al. Multisensory control of hippocampal spatiotemporal selectivity. Science 340, 1342–1346 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Aghajan, Z. M. et al. Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality. Nat. Neurosci. 18, 121–128 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Pastalkova, E., Itskov, V., Amarasingham, A., Buzsaki, G. & Buzsáki, G. Internally generated cell assembly sequences in the rat hippocampus. Science 321, 1322–1327 (2008).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • MacDonald, C. J., Lepage, K. Q., Eden, U. T. & Eichenbaum, H. Hippocampal ‘time cells’ bridge the gap in memory for discontiguous events. Neuron 71, 737–749 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, J. J., Cushman, J. D., Acharya, L., Popeney, B. & Mehta, M. R. Linking hippocampal multiplexed tuning, Hebbian plasticity and navigation. Nature 599, 442–448 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Fyhn, M., Molden, S., Witter, M. P., Moser, E. I. & Moser, M. B. Spatial representation in the entorhinal cortex. Science 305, 1258–1264 (2004).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Taube, J. S., Muller, R. U. & Ranck, J. B. Jr Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster, T. C., Castro, C. A. & McNaughton, B. L. Spatial selectivity of rat hippocampal neurons: dependence on preparedness for movement. Science 244, 1580–1582 (1989).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • McNaughton, B. L. et al. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Sakurai, Y. Involvement of auditory cortical and hippocampal neurons in auditory working memory and reference memory in the rat. J. Neurosci. 14, 2606–2623 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itskov, P. M. et al. Sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task sound sensitivity of neurons in rat hippocampus during performance of a sound-guided task. J. Neurophysiol. 107, 1822–1834 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543, 719–722 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Omer, D. B., Maimon, S. R., Las, L. & Ulanovsky, N. Social place-cells in the bat hippocampus. Science 359, 218–224 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Danjo, T., Toyoizumi, T. & Fujisawa, S. Spatial representations of self and other in the hippocampus. Science 359, 213–218 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • von Heimendahl, M., Rao, R. P. & Brecht, M. Weak and nondiscriminative responses to conspecifics in the rat hippocampus. J. Neurosci. 32, 2129–2141 (2012).


    Google Scholar
     

  • Mou, X. & Ji, D. Social observation enhances cross-environment activation of hippocampal place cell patterns. eLife 5, 1–26 (2016).


    Google Scholar
     

  • Dotson, N. M. & Yartsev, M. M. Nonlocal spatiotemporal representation in the hippocampus of freely flying bats. Science 373, 242–247 (2021).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Sakurai, Y. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat. Neuroscience 115, 1153–1163 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Cushman, J. D. et al. Multisensory control of multimodal behavior: do the legs know what the tongue is doing? PLoS ONE 8, e80465 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Malpeli, J. G. & Baker, F. H. The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. J. Comp. Neurol. 161, 569–594 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • Mehta, M. R., Quirk, M. C. & Wilson, M. A. Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25, 707–715 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed, O. J. & Mehta, M. R. The hippocampal rate code: anatomy, physiology and theory. Trends Neurosci. 32, 329–338 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya, L., Aghajan, Z. M., Vuong, C., Moore, J. J. & Mehta, M. R. Causal influence of visual cues on hippocampal directional selectivity. Cell 164, 197–207 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • de Vries, S. E. J. et al. A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nat. Neurosci. 23, 138–151 (2020).

    PubMed 

    Google Scholar
     

  • Wilson, M. A. & McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058 (1993).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Stefanini, F. et al. A distributed neural code in the dentate gyrus and in CA1. Neuron 107, 703–716.e4 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, R. U., Kubie, J. L., Bostock, E. M., Taube, J. S. & Quirk, G. J. in Brain and Space (ed. Paillard, J.) 296–333 (Oxford Univ. Press, 1991).

  • Colgin, L. L., Moser, E. I. & Moser, M. B. Understanding memory through hippocampal remapping. Trends Neurosci. 31, 469–477 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, W. A., Miller, E. K. & Desimone, R. Object and place memory in the macaque entorhinal cortex. J. Neurophysiol. 78, 1062–1081 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Saleem, A. B., Diamanti, E. M., Fournier, J., Harris, K. D. & Carandini, M. Coherent encoding of subjective spatial position in visual cortex and hippocampus. Nature 562, 124–127 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Markus, E. J. et al. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15, 7079–7094 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218 (2002).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Geiller, T., Fattahi, M., Choi, J.-S. S. & Royer, S. Place cells are more strongly tied to landmarks in deep than in superficial CA1. Nat. Commun. 8, 14531 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Taube, J. S. & Muller, R. U. Comparisons of head direction cell activity in the postsubiculum and anterior thalamus of freely moving rats. Hippocampus 8, 87–108 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Deacon, T. W., Eichenbaum, H., Rosenberg, P. & Eckmann, K. W. Afferent connections of the perirhinal cortex in the rat. J. Comp. Neurol. 220, 168–190 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Lozano, Y. R. et al. Retrosplenial and postsubicular head direction cells compared during visual landmark discrimination. Brain Neurosci. Adv. 1, 2398212817721859 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehta, M. R. & Wilson, M. A. From hippocampus to V1: effect of LTP on spatio-temporal dynamics of receptive fields. Neurocomputing 32–33, 905–911 (2000).


    Google Scholar
     

  • Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hahn, T. T., Sakmann, B. & Mehta, M. R. Phase-locking of hippocampal interneurons’ membrane potential to neocortical up-down states. Nat. Neurosci. 9, 1359–1361 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Hahn, T. T., Sakmann, B. & Mehta, M. R. Differential responses of hippocampal subfields to cortical up-down states. Proc. Natl Acad. Sci. USA 104, 5169–5174 (2007).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hahn, T. T. G., McFarland, J. M., Berberich, S., Sakmann, B. & Mehta, M. R. Spontaneous persistent activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo. Nat. Neurosci. 15, 1531–1538 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Beltramo, R. & Scanziani, M. A collicular visual cortex: neocortical space for an ancient midbrain visual structure. Science 363, 64–69 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Berens, P. CircStat: a MATLAB toolbox for circular statistics. J. Stat. Softw. 31, 1–21 (2009).


    Google Scholar
     

  • Ringach, D. L., Shapley, R. M. & Hawken, M. J. Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 22, 5639–5651 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghodrati, M., Zavitz, E., Rosa, M. G. P. & Price, N. S. C. Contrast and luminance adaptation alter neuronal coding and perception of stimulus orientation. Nat. Commun. 10, 941 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Source link