May 14, 2024
A Prox1 enhancer represses haematopoiesis in the lymphatic vasculature – Nature

A Prox1 enhancer represses haematopoiesis in the lymphatic vasculature – Nature

  • de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Spitz, F. Gene regulation at a distance: from remote enhancers to 3D regulatory ensembles. Semin. Cell Dev. Biol. 57, 57–67 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rickels, R. & Shilatifard, A. Enhancer logic and mechanics in development and disease. Trends Cell Biol. 28, 608–630 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oliver, G. et al. Prox1, a prospero-related homeobox gene expressed during mouse development. Mech. Dev. 44, 3–16 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T., Chowdhury, K., Gruss, P. & Oliver, G. Prox1 function is crucial for mouse lens-fibre elongation. Nat. Genet. 21, 318–322 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Dyer, M. A., Livesey, F. J., Cepko, C. L. & Oliver, G. Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat. Genet. 34, 53–58 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sosa-Pineda, B., Wigle, J. T. & Oliver, G. Hepatocyte migration during liver development requires Prox1. Nat. Genet. 25, 254–255 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Prox1 activity controls pancreas morphogenesis and participates in the production of “secondary transition” pancreatic endocrine cells. Dev. Biol. 286, 182–194 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Risebro, C. A. et al. Prox1 maintains muscle structure and growth in the developing heart. Development 136, 495–505 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 37, 1072–1081 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, N. C. et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 22, 3282–3291 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Francois, M. et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 456, 643–647 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Srinivasan, R. S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696–707 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J. et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or monoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood 119, 1283–1291 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ostergaard, P. et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43, 929–931 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J. et al. GATA2 is required for lymphatic vessel valve development and maintenance. J. Clin. Invest. 125, 2979–2994 (2015).

    Article 

    Google Scholar
     

  • Petrova, T. V. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med. 10, 974–981 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Norrmen, C. et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J. Cell Biol. 185, 439–457 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Srinivasan, R. S. & Oliver, G. Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev. 25, 2187–2197 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kothary, R. et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development 105, 707–714 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Shin, M. et al. Valves are a conserved feature of the zebrafish lymphatic system. Dev. Cell 51, 374–386.e5 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sweet, D. T. et al. Lymph flow regulates collecting lymphatic vessel maturation in vivo. J. Clin. Invest. 125, 2995–3007 (2015).

    Article 

    Google Scholar
     

  • Sabin, F. R. Preliminary note on the differentiation of angioblasts and the method by which they produce blood-vessels, blood-plasma and red blood-cells as seen in the living chick. 1917. J. Hematother. Stem Cell Res. 11, 5–7 (2002).

    Article 

    Google Scholar
     

  • de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474 (2000).

    Article 

    Google Scholar
     

  • Nakano, H. et al. Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat. Commun. 4, 1564 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGrath, K. E. et al. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gao, L. et al. RUNX1 and the endothelial origin of blood. Exp. Hematol. 68, 2–9 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Sabine, A. et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev. Cell 22, 430–445 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hope, K. J. et al. An RNAi screen identifies Msi2 and Prox1 as having opposite roles in the regulation of hematopoietic stem cell activity. Cell Stem Cell 7, 101–113 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Okuda, K. S. et al. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 139, 2381–2391 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dunworth W. P. et al. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circ. Res. 114, 56–66 (2014).

    Article 
    CAS 

    Google Scholar
     

  • van Impel, A. et al. Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 141, 1228–1238 (2014).

    Article 

    Google Scholar
     

  • Hogan, B. M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41, 396–398 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dubchak, I. et al. Active conservation of noncoding sequences revealed by three-way species comparisons. Genome Res. 10, 1304–1306 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Brudno, M. et al. LAGAN and multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 13, 721–731 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Bessa, J. et al. Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev. Dyn. 238, 2409–2417 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Furumoto, T. A. et al. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. Dev. Biol. 210, 15–29 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J., Michael, M. Z. & Harvey, N. L. Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood 116, 2395–2401 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Naumova, N., Smith, E. M., Zhan, Y. & Dekker, J. Analysis of long-range chromatin interactions using chromosome conformation capture. Methods 58, 192–203 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14, 178–192 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article 
    MATH 

    Google Scholar
     

  • Source link