May 27, 2024

Artificial heavy fermions in a van der Waals heterostructure – Nature

  • 1.

    Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Yazdani, A., da Silva Neto, E. H. & Aynajian, P. Spectroscopic imaging of strongly correlated electronic states. Annu. Rev. Condens. Matter Phys. 7, 11–33 (2016).

    ADS 

    Google Scholar
     

  • 3.

    Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo insulators. Annu. Rev. Condens. Matter Phys.7, 249–280 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Wirth, S. & Steglich, F. Exploring heavy fermions from macroscopic to microscopic length scales. Nat. Rev. Mater. 1, 16051 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Pfleiderer, C. et al. Partial order in the non-Fermi-liquid phase of MnSi. Nature 427, 227–231 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Stewart, G. R. Non-Fermi-liquid behavior in d– and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Löhneysen, H. V., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    ADS 

    Google Scholar
     

  • 9.

    Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

    CAS 

    Google Scholar
     

  • 10.

    Aynajian, P. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Allan, M. P. et al. Imaging Cooper pairing of heavy fermions in CeCoIn5. Nat. Phys. 9, 468–473 (2013).

    CAS 

    Google Scholar
     

  • 12.

    Zhou, B. B. et al. Visualizing nodal heavy fermion superconductivity in CeCoIn5. Nat. Phys. 9, 474–479 (2013).

    CAS 

    Google Scholar
     

  • 13.

    Chen, C., Sodemann, I. & Lee, P. A. Competition of spinon Fermi surface and heavy Fermi liquid states from the periodic Anderson to the Hubbard model. Phys. Rev. B 103, 085128 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Ramires, A. & Lado, J. L. Emulating heavy fermions in twisted trilayer graphene. Phys. Rev. Lett. 127, 026401 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Neumann, M., Nyéki, J., Cowan, B. & Saunders, J. Bilayer 3He: a simple two-dimensional heavy-fermion system with quantum criticality. Science 317, 1356–1359 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Shishido, H. et al. Tuning the dimensionality of the heavy fermion compound CeIn3. Science 327, 980–983 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Mizukami, Y. et al. Extremely strong-coupling superconductivity in artificial two-dimensional Kondo lattices. Nat. Phys. 7, 849–853 (2011).

    CAS 

    Google Scholar
     

  • 18.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS 

    Google Scholar
     

  • 22.

    Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2015).


    Google Scholar
     

  • 24.

    de la Barrera, S. C. et al. Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl Acad. Sci. USA 114, 6996–7000 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Cho, D. et al. Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Commun. 7, 10453 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Qiao, S. et al. Mottness collapse in 1T-TaS2−xSex transition-metal dichalcogenide: an interplay between localized and itinerant orbitals. Phys. Rev. X 7, 041054 (2017).


    Google Scholar
     

  • 28.

    Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020).

    CAS 

    Google Scholar
     

  • 29.

    Ruan, W. et al. Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Nat. Phys. 17, 1154–1161 (2021).

  • 30.

    Kratochvilova, M. et al. The low-temperature highly correlated quantum phase in the charge-density-wave 1T-TaS2 compound. npj Quant. Mater. 2, 42 (2017).

    ADS 

    Google Scholar
     

  • 31.

    Coqblin, B. & Schrieffer, J. R. Exchange interaction in alloys with cerium impurities. Phys. Rev. 185, 847–853 (1969).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Wen, C. et al. Roles of the narrow electronic band near the Fermi level in 1T-TaS2-related layered materials. Phys. Rev. Lett. 126, 256402 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Zhang, Y.-H. et al. Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nat. Commun. 4, 2110 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 34.

    Ryu, H. et al. Persistent charge-density-wave order in single-layer TaSe2. Nano Lett. 18, 689–694 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    McMillan, W. L. & Mochel, J. Electron tunneling experiments on amorphous Ge1−xAux. Phys. Rev. Lett. 46, 556–557 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Ernst, S. et al. Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2. Nature 474, 362–366 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Röβler, S. et al. Hybridization gap and Fano resonance in SmB6. Proc. Natl Acad. Sci. USA 111, 4798–4802 (2014).

    ADS 

    Google Scholar
     

  • 38.

    Bose, S. & Ayyub, P. A review of finite size effects in quasi-zero dimensional superconductors. Rep. Prog. Phys. 77, 116503 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 39.

    Ganguli, S. C., Vaňo, V., Kezilebieke, S., Lado, J. L. & Liljeroth, P. Controlling correlations in NbSe2 via quantum confinement. Preprint at https://arxiv.org/abs/2009.13422 (2020).

  • 40.

    Kouwenhoven, L. P., Austing, D. G. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701–736 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    She, J.-H., Kim, C. H., Fennie, C. J., Lawler, M. J. & Kim, E.-A. Topological superconductivity in metal/quantum-spin-ice heterostructures. npj Quant. Mater. 2, 64 (2017).

    ADS 

    Google Scholar
     

  • 42.

    Ribak, A. et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2. Sci. Adv. 6, eaax9480 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Seiro, S. et al. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal. Nat. Commun. 9, 3324 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Hall, J. et al. Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study. 2D Mater. 5, 025005 (2018).


    Google Scholar
     

  • 45.

    Lin, H. et al. Growth of atomically thick transition metal sulfide films on graphene/6H-SiC(0001) by molecular beam epitaxy. Nano Res. 11, 4722–4727 (2018).

    CAS 

    Google Scholar
     

  • Source link