May 26, 2024

ecDNA hubs drive cooperative intermolecular oncogene expression – Nature

  • 1.

    Wu, S. et al. Circular ecDNA promotes accessible chromatin and high oncogene expression. Nature 575, 699–703 (2019).

  • 2.

    Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762–775 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Bailey, C., Shoura, M. J., Mischel, P. S. & Swanton, C. Extrachromosomal DNA—relieving heredity constraints, accelerating tumour evolution. Ann. Oncol. 31, 884–893 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Kim, H. et al. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat. Genet. 52, 891–897 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 7.

    Verhaak, R. G. W., Bafna, V. & Mischel, P. S. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat. Rev. Cancer 19, 283–288 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Cox, D., Yuncken, C. & Spriggs, A. I. Minute chromatin bodies in malignant tumours of childhood. Lancet 286, 55–58 (1965).


    Google Scholar
     

  • 9.

    van der Bliek, A. M., Lincke, C. R. & Borst, P. Circular DNA of 3T6R50 double minute chromosomes. Nucleic Acids Res. 16, 4841–4851 (1988).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Hamkalo, B. A., Farnham, P. J., Johnston, R. & Schimke, R. T. Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line. Proc. Natl Acad. Sci. 82, 1126–1130 (1985).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 11.

    Maurer, B. J., Lai, E., Hamkalo, B. A., Hood, L. & Attardi, G. Novel submicroscopic extrachromosomal elements containing amplified genes in human cells. Nature 327, 434–437 (1987).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 12.

    VanDevanter, D. R., Piaskowski, V. D., Casper, J. T., Douglass, E. C. & Von Hoff, D. D. Ability of circular extrachromosomal DNA molecules to carry amplified MYCN protooncogenes in human neuroblastomas in vivo. J Natl Cancer Inst. 82, 1815–1821 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 14.

    Ståhl, F., Wettergren, Y. & Levan, G. Amplicon structure in multidrug-resistant murine cells: a nonrearranged region of genomic DNA corresponding to large circular DNA. Mol. Cell. Biol. 12, 1179–1187 (1992).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Vicario, R. et al. Patterns of HER2 gene amplification and response to anti-HER2 therapies. PLoS ONE 10, e0129876 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Carroll, S. M. et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol. Cell. Biol. 8, 1525–1533 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Kitajima, K., Haque, M., Nakamura, H., Hirano, T. & Utiyama, H. Loss of irreversibility of granulocytic differentiation induced by dimethyl sulfoxide in HL-60 sublines with a homogeneously staining region. Biochem. Biophys. Res. Commun. 288, 1182–1187 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Quinn, L. A., Moore, G. E., Morgan, R. T. & Woods, L. K. Cell lines from human colon carcinoma with unusual cell products, double minutes, and homogeneously staining regions. Cancer Res. 39, 4914–4924 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Storlazzi, C. T. et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 20, 1198–1206 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Wahl, G. M. The importance of circular DNA in mammalian gene amplification. Cancer Res. 49, 1333–1340 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Kumar, P. et al. ATAC–seq identifies thousands of extrachromosomal circular DNA in cancer and cell lines. Sci. Adv. 6, eaba2489 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 22.

    Morton, A. R. et al. Functional enhancers shape extrachromosomal oncogene amplifications. Cell 179, 1330–1341 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Helmsauer, K. et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat. Commun. 11, 5823 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 24.

    Itoh, N. & Shimizu, N. DNA replication-dependent intranuclear relocation of double minute chromatin. J. Cell Sci. 111, 3275–3285 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Kanda, T., Sullivan, K. F. & Wahl, G. M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Oobatake, Y. & Shimizu, N. Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Cancer 59, 133–143 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 28.

    Koche, R. P. et al. Extrachromosomal circular DNA drives oncogenic genome remodeling in neuroblastoma. Nat. Genetics 52, 29–34 (2019).

    PubMed 

    Google Scholar
     

  • 29.

    Parker, S. C. J. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 30.

    Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 33.

    Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Ren, C. et al. Spatially constrained tandem bromodomain inhibition bolsters sustained repression of BRD4 transcriptional activity for TNBC cell growth. Proc. Natl Acad. Sci. USA 115, 7949–7954 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Deshpande, V. et al. Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat. Commun. 10, 392 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 36.

    Luebeck, J. et al. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nat. Commun. 11, 4374 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 37.

    Schwab, M., Klempnauer, K. H., Alitalo, K., Varmus, H. & Bishop, M. Rearrangement at the 5′ end of amplified c-myc in human COLO 320 cells is associated with abnormal transcription. Mol. Cell. Biol. 6, 2752–2755 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    L’Abbate, A. et al. Genomic organization and evolution of double minutes/homogeneously staining regions with MYC amplification in human cancer. Nucleic Acids Res. 42, 9131–9145 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Hann, S. R., King, M. W., Bentley, D. L., Anderson, C. W. & Eisenman, R. N. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell 52, 185–195 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Carramusa, L. et al. The PVT-1 oncogene is a Myc protein target that is overexpressed in transformed cells. J. Cell. Physiol. 213, 511–518 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-suppressor DNA boundary element. Cell 173, 1398–1412 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Tolomeo, D., Agostini, A., Visci, G., Traversa, D. & Storlazzi, C. T. PVT1: a long non-coding RNA recurrently involved in neoplasia-associated fusion transcripts. Gene 779, 145497 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Park, J. et al. A reciprocal regulatory circuit between CD44 and FGFR2 via c-myc controls gastric cancer cell growth. Oncotarget 7, 28670–28683 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 47.

    Zhu, Y. et al. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. Cancer Cell 39, 694–707 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Xue, K. S., Hooper, K. A., Ollodart, A. R., Dingens, A. S. & Bloom, J. D. Cooperation between distinct viral variants promotes growth of H3N2 influenza in cell culture. Elife 5, e13974 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348 (2006).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 50.

    Henssen, A. et al. Targeting MYCN-driven transcription by BET-bromodomain inhibition. Clin. Cancer Res. 22, 2470–2481 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Xie, L. et al. 3D ATAC-PALM: super-resolution imaging of the accessible genome. Nat. Methods 17,430–436 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Ambros, P. F. et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br. J. Cancer 100, 1471–1482 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Balaban-Malenbaum, G. & Gilbert, F. Double minute chromosomes and the homogeneously staining regions in chromosomes of a human neuroblastoma cell line. Science 198, 739–741 (1977).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 54.

    Marrano, P., Irwin, M. S. & Thorner, P. S. Heterogeneity of MYCN amplification in neuroblastoma at diagnosis, treatment, relapse, and metastasis. Genes Chromosomes Cancer 56, 28–41 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Villamón, E. et al. Genetic instability and intratumoral heterogeneity in neuroblastoma with MYCN amplification plus 11q deletion. PLoS ONE 8, e53740 (2013).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 56.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Rajkumar, U. et al. EcSeg: semantic segmentation of metaphase images containing extrachromosomal DNA. Iscience 21, 428–435 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 58.

    Veatch, S. L. et al. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS ONE 7, e31457 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 59.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 61.

    Normanno, D. et al. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher. Nat. Commun. 6, 7357 (2015).

    PubMed 
    ADS 

    Google Scholar
     

  • 62.

    Mirkin, E. V., Chang, F. S. & Kleckner, N. Protein-mediated chromosome pairing of repetitive arrays. J. Mol. Biol. 426, 550–557 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Grimm, J. B. et al. A general method to optimize and functionalize red-shifted rhodamine dyes. Nat. Methods 17, 815–821 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Zhang, Y. et al. Model-based analysis of ChIP–seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Overhauser, J. in Pulsed-Field Gel Electrophoresis, Methods in Molecular Biology Vol. 12 (eds. Burmeister, M. & Ulanovsky, L.) 129–134 (Humana Press, 1992).

  • 69.

    Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Corces, M. R. et al. An improved ATAC–seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Talevich, E., Shain, A. H., Botton, T. & Bastian, B. C. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput. Biol. 12, e1004873 (2016).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 72.

    Raeisi Dehkordi, S., Luebeck, J. & Bafna, V. FaNDOM: fast nested distance-based seeding of optical maps. Patterns 2, 100248 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Haas, B. J. et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 20, 213 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Hahne, F. & Ivanek, R. in Statistical Genomics, Methods in Molecular Biology Vol. 1418 (eds. Mathé, E. & Davis, S.) 335–351 (Humana Press, 2016).

  • 75.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet. 49, 1602–1612 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Mumbach, M. R. et al. HiChIRP reveals RNA-associated chromosome conformation. Nat. Methods 16, 489–492 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ay, F. Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat. Commun. 10, 4221 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 82.

    Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Vidal, E. et al. OneD: increasing reproducibility of Hi-C samples with abnormal karyotypes. Nucleic Acids Res. 46, e49 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Flynn, R. A. et al. Discovery and functional interrogation of SARS-CoV-2 RNA–host protein interactions. Cell 184, 2394–2411 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Scheinin, I. et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 24, 2022–2032 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Hadi, K. et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183, 197–210 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Blumrich, A. et al. The FRA2C common fragile site maps to the borders of MYCN amplicons in neuroblastoma and is associated with gross chromosomal rearrangements in different cancers. Hum. Mol. Genet. 20, 1488–1501 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Gogolin, S. et al. CDK4 inhibition restores G1-S arrest in MYCN-amplified neuroblastoma cells in the context of doxorubicin-induced DNA damage. Cell Cycle 12, 1091–1104 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2013).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 93.

    Boeva, V. et al. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat. Genet. 49, 1408–1413 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link