April 26, 2024
Atomic Bose–Einstein condensate in twisted-bilayer optical lattices – Nature

Atomic Bose–Einstein condensate in twisted-bilayer optical lattices – Nature

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J., Mu, X., Wang, L. & Sun, M. Properties and applications of new superlattice: twisted bilayer graphene. Mater. Today Phys. 9, 100099 (2019).

    Article 

    Google Scholar
     

  • Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in Moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon, P. & Koshino, M. Energy spectrum and quantum Hall effect in twisted bilayer graphene. Phys. Rev. B 85, 195458 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C. et al. Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials. Sci. Rep. 6, 32546 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Q. et al. Optical soliton formation controlled by angle twisting in photonic Moiré lattices. Nat. Photon. 14, 663–668 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lewenstein, M., Sanpera, A. & Ahufinger, V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body systems (Oxford Univ. Press, 2012).

  • Windpassinger, P. & Sengstock, K. Engineering novel optical lattices. Rep. Prog. Phys. 76, 086401 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nat. Phys. 7, 434–440 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wirth, G., Ölschläger, M. & Hemmerich, A. Evidence for orbital superfluidity in the P-band of a bipartite optical square lattice. Nat. Phys. 7, 147–153 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, G. B. et al. Ultracold atoms in a tunable optical kagome lattice. Phys. Rev. Lett. 108, 045305 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Taie, S. et al. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv. 1, e1500854 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gall, M., Wurz, N., Samland, J., Chan, C. F. & Köhl, M. Competing magnetic orders in a bilayer Hubbard model with ultracold atoms. Nature 589, 40 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • González-Tudela, A. & Cirac, J. I. Cold atoms in twisted-bilayer optical potentials. Phys. Rev. A 100, 053604 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Luo, X. & Zhang, C. Spin-twisted optical lattices: tunable flat bands and Larkin-Ovchinnikov superfluids. Phys. Rev. Lett. 126, 103201 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Graß, T., Chhajlany, R. W., Tarruell, L., Pellegrini, V. & Lewenstein, M. Proximity effects in cold atom artificial graphene. 2D Mater. 4, 015039 (2016).

    Article 

    Google Scholar
     

  • Salamon, T. et al. Simulating twistronics without a twist. Phys. Rev. Lett. 125, 030504 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Boada, O., Celi, A., Latorre, J. I. & Lewenstein, M. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Article 

    Google Scholar
     

  • LeBlanc, L. J. & Thywissen, J. H. Species-specific optical lattices. Phys. Rev. A 75, 053612 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Arora, B., Safronova, M. S. & Clark, C. W. Tune-out wavelengths of alkali-metal atoms and their applications. Phys. Rev. A 84, 043401 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Wen, K. et al. Experimental study of tune-out wavelengths for spin-dependent optical lattice in 87Rb Bose-Einstein condensation. J. Opt. Soc. Am. B 38, 3269 (2021).

    Article 
    ADS 

    Google Scholar
     

  • McDonald, M., Trisnadi, J., Yao, K. & Chin, C. Superresolution microscopy of cold atoms in an optical lattice. Phys. Rev. X 9, 021001 (2019).

    CAS 

    Google Scholar
     

  • Gerbier, F. et al. Interference pattern and visibility of a Mott insulator. Phys. Rev. A 72, 053606 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krauth, W., Trivedi, N. & Ceperley, D. Superfluid-insulator transition in disordered boson systems. Phys. Rev. Lett. 67, 2307–2310 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Freericks, J. K. & Monien, H. Strong-coupling expansions for the pure and disordered Bose-Hubbard model. Phys. Rev. B 53, 2691–2700 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kariyado, T. & Vishwanath, A. Flat band in twisted bilayer Bravais lattices. Phys. Rev. Res. 1, 033076 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kennes, D. M., Xian, L., Claassen, M. & Rubio, A. One-dimensional flat bands in twisted bilayer germanium selenide. Nat. Commun. 11, 31124 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Xiong, D., Wang, P., Fu, Z., Chai, S. & Zhang, J. Evaporative cooling of 87Rb atoms into Bose-Einstein condensate in an optical dipole trap. Chin. Opt. Lett. 8, 627–629 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Steck, D. A. Quantum and Atom Optics https://atomoptics.uoregon.edu/~dsteck/teaching/quantum-optics/ (2007).

  • Zwerger, W. Mott Hubbard transition of cold atoms in optical lattices. J. Opt. B: Quantum Semiclass. Opt. 5, S9–S16 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krauth, W., Caffarel, M. & Bouchaud, J. P. Gutzwiller wave function for a model of strongly interacting bosons. Phys. Rev. B 45, 3137–3140 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sheshadri, K., Krishnamurthy, H. R., Pandit, R. & Ramakrishnan, T. V. Superfluid and insulating phases in an interacting-Boson model: mean-field theory and the RPA. Europhys. Lett. 22, 257–263 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold Bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link