May 8, 2024
Break-induced replication orchestrates resection-dependent template switching – Nature

Break-induced replication orchestrates resection-dependent template switching – Nature

  • Dilley, R. L. et al. Break-induced telomere synthesis underlies alternative telomere maintenance. Nature 539, 54–58 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roumelioti, F. M. et al. Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication. EMBO Rep. 17, 1731–1737 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramara, J., Osia, B. & Malkova, A. Break-induced replication: the where, the why, and the how. Trends Genet. 34, 518–531 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Epum, E. A. & Haber, J. E. DNA replication: the recombination connection. Trends Cell Biol. 32, 45–57 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. & Malkova, A. Break-induced replication mechanisms in yeast and mammals. Curr. Opin. Genet. Dev. 71, 163–170 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dejardin, J. & Kingston, R. E. Purification of proteins associated with specific genomic loci. Cell 136, 175–186 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Zain, A. M. & Symington, L. S. The dark side of homology-directed repair. DNA Repair 106, 103181 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costantino, L. et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, C. E., Llorente, B. & Symington, L. S. Template switching during break-induced replication. Nature 447, 102–105 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, N. W., Dilley, R. L., Lampson, M. A. & Greenberg, R. A. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159, 108–121 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Attali, I., Botchan, M. R. & Berger, J. M. Structural mechanisms for replicating DNA in eukaryotes. Annu. Rev. Biochem. 90, 77–106 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lydeard, J. R., Jain, S., Yamaguchi, M. & Haber, J. E. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448, 820–823 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Doksani, Y. & de Lange, T. Telomere-internal double-strand breaks are repaired by homologous recombination and PARP1/Lig3-dependent end-joining. Cell Rep. 17, 1646–1656 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, P. et al. Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells. Nat. Commun. 7, 12154 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cesare, A. J. et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat. Struct. Mol. Biol. 16, 1244–1251 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flynn, R. L. et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baddock, H. T. et al. The SNM1A DNA repair nuclease. DNA Repair 95, 102941 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buzon, B., Grainger, R., Huang, S., Rzadki, C. & Junop, M. S. Structure-specific endonuclease activity of SNM1A enables processing of a DNA interstrand crosslink. Nucleic Acids Res. 46, 9057–9066 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300, 1542–1548 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma, P. et al. RAD52 and SLX4 act nonepistatically to ensure telomere stability during alternative telomere lengthening. Genes Dev. 33, 221–235 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z., Takai, K. K., Lovejoy, C. A. & de Lange, T. Break-induced replication promotes fragile telomere formation. Genes Dev. 34, 1392–1405 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. M., Genois, M. M., Ouyang, J., Lan, L. & Zou, L. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies. Mol. Cell 81, 1027–1042 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niimi, A. et al. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc. Natl Acad. Sci. USA 105, 16125–16130 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase ε with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491–500 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat. Cell Biol. 11, 592–603 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, D. J. & Cimprich, K. A. DNA damage tolerance: when it’s OK to make mistakes. Nat. Chem. Biol. 5, 82–90 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nambiar, T. S. et al. Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat. Commun. 10, 3395 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lydeard, J. R. et al. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 24, 1133–1144 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, K., Moldovan, G. L. & D’Andrea, A. D. RAD18-dependent recruitment of SNM1A to DNA repair complexes by a ubiquitin-binding zinc finger. J. Biol. Chem. 285, 19085–19091 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Syvaoja, J. et al. DNA polymerases α, 𝛿, and ε: three distinct enzymes from HeLa cells. Proc. Natl Acad. Sci. USA 87, 6664–6668 (1990).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oganesian, L. & Karlseder, J. Mammalian 5′ C-rich telomeric overhangs are a mark of recombination-dependent telomere maintenance. Mol. Cell 42, 224–236 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nabetani, A. & Ishikawa, F. Unusual telomeric DNAs in human telomerase-negative immortalized cells. Mol. Cell. Biol. 29, 703–713 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, T. et al. Strand break-induced replication fork collapse leads to C-circles, C-overhangs and telomeric recombination. PLoS Genet. 15, e1007925 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sengerova, B. et al. Characterization of the human SNM1A and SNM1B/Apollo DNA repair exonucleases. J. Biol. Chem. 287, 26254–26267 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, A. T. et al. Human SNM1A and XPF–ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev. 25, 1859–1870 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Z., Chung, W. H., Shim, E. Y., Lee, S. E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi, S. E., Foiani, M. & Giannattasio, M. Dna2 processes behind the fork long ssDNA flaps generated by Pif1 and replication-dependent strand displacement. Nat. Commun. 9, 4830 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilson, E. & Geli, V. How telomeres are replicated. Nat. Rev. Mol. Cell Biol. 8, 825–838 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Exposito, L. et al. Proteomic profiling reveals a specific role for translesion DNA polymerase ε in the alternative lengthening of telomeres. Cell Rep. 17, 1858–1871 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. & Lawrence, C. W. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc. Natl Acad. Sci. USA 102, 15954–15959 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Branzei, D., Vanoli, F. & Foiani, M. SUMOylation regulates Rad18-mediated template switch. Nature 456, 915–920 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanoli, F., Fumasoni, M., Szakal, B., Maloisel, L. & Branzei, D. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch. PLoS Genet. 6, e1001205 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stafa, A., Donnianni, R. A., Timashev, L. A., Lam, A. F. & Symington, L. S. Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Genetics 196, 1017–1028 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anand, R. P. et al. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev. 28, 2394–2406 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fallet, E. et al. Length-dependent processing of telomeres in the absence of telomerase. Nucleic Acids Res. 42, 3648–3665 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowden, M. R., Flibotte, S., Moerman, D. G. & Ahmed, S. DNA synthesis generates terminal duplications that seal end-to-end chromosome fusions. Science 332, 468–471 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stivison, E. A., Young, K. J. & Symington, L. S. Interstitial telomere sequences disrupt break-induced replication and drive formation of ectopic telomeres. Nucleic Acids Res. 48, 12697–12710 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Tracking break-induced replication shows that it stalls at roadblocks. Nature 590, 655–659 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hejna, J., Philip, S., Ott, J., Faulkner, C. & Moses, R. The hSNM1 protein is a DNA 5′-exonuclease. Nucleic Acids Res. 35, 6115–6123 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma, P. et al. ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nat. Cell Biol. 23, 160–171 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gier, R. A. et al. High-performance CRISPR–Cas12a genome editing for combinatorial genetic screening. Nat. Commun. 11, 3455 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kan, S. L., Saksouk, N. & Dejardin, J. Proteome characterization of a chromatin locus using the proteomics of isolated chromatin segments approach. Methods Mol. Biol. 1550, 19–33 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, T. et al. Looping‐out mechanism for resolution of replicative stress at telomeres. EMBO Rep. 18, 1412–1428 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verma, P., Dilley, R. L., Gyparaki, M. T. & Greenberg, R. A. Direct quantitative monitoring of homology-directed DNA repair of damaged telomeres. Methods Enzymol. 600, 107–134 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lippert, T. P. et al. Oncogenic herpesvirus KSHV triggers hallmarks of alternative lengthening of telomeres. Nat. Commun. 12, 512 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y., Shay, J. W. & Wright, W. E. Telomere G-overhang length measurement method 1: the DSN method. Methods Mol. Biol. 735, 47–54 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henson, J. D. et al. DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat. Biotechnol. 27, 1181–1185 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pastwa, E., Neumann, R. D. & Winters, T. A. In vitro repair of complex unligatable oxidatively induced DNA double-strand breaks by human cell extracts. Nucleic Acids Res. 29, E78 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link