May 23, 2024

Carbon monoxide gas produced by a giant impact in the inner region of a young system – Nature

  • 1.

    Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N. & Walsh, K. J. Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Lisse, C. M. et al. Abundant circumstellar silica dust and SiO gas created by a giant hypervelocity collision in the 12 Myr HD 172555 system. Astrophys. J. 701, 2019–2032 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Johnson, B. C. et al. A self-consistent model of the circumstellar debris created by a giant hypervelocity impact in the HD 172555 system. Astrophys. J. 761, 45 (2012).

  • 4.

    Wyatt, M. C. et al. Steady state evolution of debris disks around A stars. Astrophys. J. 663, 365–382 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Mamajek, E. E. & Bell, C. P. M. On the age of the β Pictoris moving group. Mon. Not. R. Astron. Soc. 445, 2169–2180 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    David, T. J. & Hillenbrand, L. A. The ages of early-type stars: Strömgren photometric methods calibrated, validated, tested, and applied to hosts and prospective hosts of directly imaged exoplanets. Astrophys. J. 804, 146 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Prusti, T. et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article 

    Google Scholar
     

  • 8.

    Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  • 9.

    Zuckerman, B., Song, I., Bessell, M. S. & Webb, R. A. The β Pictoris moving group. Astrophys. J. 562, L87–L90 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Cote, J. B and A type stars with unexpectedly large colour excesses at IRAS wavelengths. Astron. Astrophys. 181, 77–84 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Smith, R., Wyatt, M. C. & Haniff, C. A. Resolving the terrestrial planet forming regions of HD113766 and HD172555 with MIDI. Mon. Not. R. Astron. Soc. 422, 2560–2580 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Engler, N., Schmid, H. M., Quanz, S. P., Avenhaus, H. & Bazzon, A. Detection of scattered light from the hot dust in HD 172555. Astron. Astrophys. 618, 1–15 (2018).

  • 13.

    Chen, C. H. et al. Spitzer IRS spectroscopy of IRAS‐discovered debris disks. Astrophys. J. Suppl. Ser. 166, 351–377 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Gontcharov, G. A. Pulkovo compilation of radial velocities for 35 495 Hipparcos stars in a common system. Astron. Lett. 32, 759–771 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Kral, Q., Marino, S., Wyatt, M. C., Kama, M. & Matrà, L. Imaging [CI] around HD 131835: reinterpreting young debris discs with protoplanetary disc levels of CO gas as shielded secondary discs. Mon. Not. R. Astron. Soc. 489, 3670–3691 (2019).

    ADS 

    Google Scholar
     

  • 16.

    Kennedy, G. M. & Kenyon, S. J. Stellar mass dependent disk dispersal. Astrophys. J. 695, 1210–1226 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Ribas, Á., Bouy, H. & Merín, B. Protoplanetary disk lifetimes vs. stellar mass and possible implications for giant planet populations. Astron. Astrophys. 576, A52 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Wyatt, M. C., Panić, O., Kennedy, G. M. & Matrà, L. Five steps in the evolution from protoplanetary to debris disk. Astrophys. Space Sci. 357, 103 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Isella, A. et al. The Disk Substructures at High Angular Resolution Project (DSHARP) – IX: a high definition study of the HD 163296 planet forming disk. Astrophys. J. Lett. 869, L49 (2018).

  • 20.

    Boehler, Y. et al. The complex morphology of the young disk MWC 758: spirals and dust clumps around a large cavity. Astrophys. J. 853, 162 (2017).

  • 21.

    Morris, M. A. & Desch, S. J. Thermal histories of chondrules in solar nebula shocks. Astrophys. J. 722, 1474–1494 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Su, K. Y. L. et al. Mid-infrared studies of HD 113766 and HD 172555: assessing variability in the terrestrial zone of young exoplanetary systems. Astrophys. J. 898, 21 (2020).

  • 23.

    Matrà, L., Öberg, K. I., Wilner, D. J., Olofsson, J. & Bayo, A. On the ubiquity and stellar luminosity dependence of exocometary CO gas: detection around M dwarf TWA 7. Astron. J. 157, 117 (2019).

  • 24.

    Matrà, L., Panić, O., Wyatt, M. C. & Dent, W. R. F. CO mass upper limits in the Fomalhaut ring—the importance of NLTE excitation in debris discs and future prospects with ALMA. Mon. Not. R. Astron. Soc. 447, 3936–3947 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 25.

    Marino, S. et al. Exocometary gas in the HD 181327 debris ring. Mon. Not. R. Astron. Soc. 460, 2933–2944 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Matrà, L. et al. Detection of exocometary CO within the 440 Myr-old Fomalhaut belt: a similar CO+CO2 ice abundance in exocomets and Solar System comets. Astrophys. J. 842, 9 (2017).

  • 27.

    Kral, Q., Matrà, L., Wyatt, M. C. & Kennedy, G. M. Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals. Mon. Not. R. Astron. Soc. 469, 521–550 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Zuckerman, B. & Song, I. A 40Myr old gaseous circumstellar disk at 49 CETI: massive CO-rich comet clouds at young A-type stars. Astrophys. J. 758, 77 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 29.

    Prialnik, D. & Rosenberg, E. D. Can ice survive in main-belt comets? Long-term evolution models of comet 133P/Elst-Pizarro. Mon. Not. R. Astron. Soc. Lett. 399, L79–L83 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Snodgrass, C. et al. The Main Belt comets and ice in the Solar System. Astron. Astrophys. Rev. 25, 5 (2017).


    Google Scholar
     

  • 31.

    Marino, S. et al. ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3-30 M planets? Mon. Not. R. Astron. Soc. 465, 2595–2615 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Benz, W., Anic, A., Horner, J. & Whitby, J. A. The origin of Mercury. Space Sci. Rev. 132, 189–202 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Chau, A., Reinhardt, C., Helled, R. & Stadel, J. Forming Mercury by giant impacts. Astrophys. J. 865, 35 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 34.

    Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Canup, R. M. Forming a moon with an Earth-like composition via a giant impact. Science 338, 1052-1055 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Mastrobuono-Battisti, A., Perets, H. B. & Raymond, S. N. A primordial origin for the compositional similarity between the Earth and the Moon. Nature 520, 212–215 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Marinova, M. M., Aharonson, O. & Asphaug, E. Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 1216–1219 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Nimmo, F., Hart, S. D., Korycansky, D. G. & Agnor, C. B. Implications of an impact origin for the Martian hemispheric dichotomy. Nature 453, 1220–1223 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Davies, J. H. Did a mega-collision dry Venus’ interior? Earth Planet. Sci. Lett. 268, 376–383 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 40.

    Wyatt, M. C. & Jackson, A. P. Insights into planet formation from debris disks: II. giant impacts in extrasolar planetary systems. Space Sci. Rev. 205, 231–265 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Heays, A. N., Bosman, A. D. & van Dishoeck, E. F. Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astron. Astrophys. 602, A105 (2017).

  • 42.

    Schlichting, H. E. & Mukhopadhyay, S. Atmosphere impact losses. Space Sci. Rev. 214, 34 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Kegerreis, J. A. et al. Atmospheric erosion by giant impacts onto terrestrial planets: a scaling law for any speed, angle, mass, and density. Astrophys. J. Lett. 901, L31 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 44.

    Lammer, H. et al. Origin and evolution of the atmospheres of early Venus, Earth and Mars. Astron. Astrophys. Rev. 26, 2 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 45.

    Biersteker, J. B. & Schlichting, H. E. Atmospheric mass-loss due to giant impacts: the importance of the thermal component for hydrogen–helium envelopes. Mon. Not. R. Astron. Soc. 485, 4454–4463 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 46.

    Högbom, J. & Cornwell, T. Aperture synthesis with a non-regular distribution of interferometer baselines. Commentary. Astron. Astrophys. 500, 55–66 (2009).

    ADS 

    Google Scholar
     

  • 47.

    White, J. A. et al. The MESAS Project: long-wavelength follow-up observations of Sirius A. Astrophys. J. 875, 55 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 48.

    Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924 (1990).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Matrà, L. et al. Molecular reconnaissance of the β Pictoris gas disk with the SMA: a low HCN/(CO+CO2) outgassing ratio and predictions for future surveys. Astrophys. J. 853, 147 (2018).

  • 51.

    Husser, T. O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 52.

    Feroz, F., Hobson, M. P. & Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Sepulveda, A. G. et al. The REASONS Survey: resolved millimeter observations of a large debris disk around the nearby F star HD 170773. Astrophys. J. 881, 84 (2019).

  • 54.

    Yelverton, B., Kennedy, G. M., Su, K. Y. L. & Wyatt, M. C. A statistically significant lack of debris discs in medium separation binary systems. Mon. Not. R. Astron. Soc. 488, 3588–3606 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 55.

    Marboeuf, U., Bonsor, A. & Augereau, J. C. Extrasolar comets: the origin of dust in exozodiacal disks? Planet. Space Sci. 133, 47–62 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 56.

    Matrà, L. et al. An empirical planetesimal belt radius–stellar luminosity relation. Astrophys. J. 859, 72 (2018).

  • 57.

    Marino, S., Bonsor, A., Wyatt, M. C. & Kral, Q. Scattering of exocomets by a planet chain: exozodi levels and the delivery of cometary material to inner planets. Mon. Not. R. Astron. Soc. 479, 1651–1671 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 58.

    Biver, N. et al. The 1995–2002 long-term monitoring of comet C/1995 O1 (Hale-Bopp) at radio wavelength. Earth Moon Planets 90, 5–14 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Wyatt, M. C. et al. How observations of circumstellar disk asymmetries can reveal hidden planets: pericenter glow and its application to the HR 4796 disk. Astrophys. J. 527, 918–944 (1999).

    ADS 
    Article 

    Google Scholar
     

  • 60.

    Wyatt, M. C., Bonsor, A., Jackson, A. P., Marino, S. & Shannon, A. How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs. Mon. Not. R. Astron. Soc. 464, 3385–3407 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Source link