May 29, 2024

Regulation of intestinal immunity and tissue repair by enteric glia – Nature

  • 1.

    Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10, 131–144 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Maloy, K. J. & Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298–306 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Roulis, M. & Flavell, R. A. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 92, 116–131 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Koliaraki, V., Prados, A., Armaka, M. & Kollias, G. The mesenchymal context in inflammation, immunity and cancer. Nat. Immunol. 21, 974–982 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Laranjeira, C. et al. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Invest. 121, 3412–3424 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Reynolds, L. A., Filbey, K. J. & Maizels, R. M. Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Semin. Immunopathol. 34, 829–846 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Boesmans, W., Lasrado, R., Vanden Berghe, P. & Pachnis, V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia 63, 229–241 (2015).

    Article 

    Google Scholar
     

  • 12.

    Heanue, T. A. & Pachnis, V. Prospective identification and isolation of enteric nervous system progenitors using Sox2. Stem Cells 29, 128–140 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Lasrado, R. et al. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 356, 722–726 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Bach, E. A., Aguet, M. & Schreiber, R. D. The IFNγ receptor: a paradigm for cytokine receptor signaling. Annu. Rev. Immunol. 15, 563–591 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Lee, H. M. et al. IFNγ signaling endows DCs with the capacity to control type I inflammation during parasitic infection through promoting T-bet+ regulatory T cells. PLoS Pathog. 11, e1004635 (2015).

    Article 

    Google Scholar
     

  • 16.

    Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Gentile, M. E. et al. NK cell recruitment limits tissue damage during an enteric helminth infection. Mucosal Immunol. 13, 357–370 (2020).

  • 18.

    Nusse, Y. M. et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature 559, 109–113 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Roulis, M. et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 580, 524–529 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Rinkevich, Y. et al. Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat. Cell Biol. 14, 1251–1260 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Mutsaers, S. E. et al. Mesothelial cells in tissue repair and fibrosis. Front. Pharmacol. 6, 113 (2015).

    Article 

    Google Scholar
     

  • 22.

    Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Dufour, J. H. et al. IFN-γ-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J. Immunol. 168, 3195–3204 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Mills Ko, E. et al. Deletion of astroglial CXCL10 delays clinical onset but does not affect progressive axon loss in a murine autoimmune multiple sclerosis model. J. Neuroinflammation 11, 105 (2014).

    Article 

    Google Scholar
     

  • 25.

    Ostvik, A. E. et al. Enhanced expression of CXCL10 in inflammatory bowel disease: potential role of mucosal Toll-like receptor 3 stimulation. Inflamm. Bowel Dis. 19, 265–274 (2013).

    Article 

    Google Scholar
     

  • 26.

    Wang, L. et al. An atlas of genetic variation linking pathogen-induced cellular traits to human disease. Cell Host Microbe 24, 308–323 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Sasselli, V. et al. Planar cell polarity genes control the connectivity of enteric neurons. J. Clin. Invest. 123, 1763–1772 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Tavares, G. et al. Employing an open-source tool to assess astrocyte tridimensional structure. Brain Struct. Funct. 222, 1989–1999 (2017).

    Article 

    Google Scholar
     

  • 30.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • 31.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Su, S. et al. CellBench: R/Bioconductor software for comparing single-cell RNA-seq analysis methods. Bioinformatics 36, 2288–2290 (2020).

  • 34.

    Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article 

    Google Scholar
     

  • 35.

    Reimand, J. et al. g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 44, W83–W89 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Sergushichev, A. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. Preprint at https://doi.org/10.1101/060012 (2016).

  • 37.

    NCBI Resource Coordinators Database resources of the national center for biotechnology information. Nucleic Acids Res. 46, D8–D13 (2018).

    Article 

    Google Scholar
     

  • 38.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 39.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).

    Book 

    Google Scholar
     

  • 41.

    ggsignif: significance brackets for ‘ggplot2’. Preprint at https://doi.org/10.31234/osf.io/7awm6 (2019).

  • 42.

    ggrepel: automatically position non-overlapping text labels with ‘ggplot2’. R package version 0.9.1; https://CRAN.R-project.org/package=ggrepel (2020).

  • 43.

    ggsci: scientific journal and sci-fi themed color palettes for ‘ggplot2’. R package version 2.9; https://CRAN.R-project.org/package=ggsci (2018).

  • Source link