May 4, 2024
Cilia metasurfaces for electronically programmable microfluidic manipulation – Nature

Cilia metasurfaces for electronically programmable microfluidic manipulation – Nature

  • Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • den Toonder, J. M. J. & Onck, P. R. Microfluidic manipulation with artificial/bioinspired cilia. Trends Biotechnol. 31, 85–91 (2013).

    Article 

    Google Scholar
     

  • Lee, C.-Y., Chang, C.-L., Wang, Y.-N. & Fu, L.-M. Microfluidic mixing: a review. Int. J. Mol. Sci. 12, 3263–3287 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Gu, H. et al. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11, 2637 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, Y., den Toonder, J., Cardinaels, R. & Anderson, P. A continuous roll-pulling approach for the fabrication of magnetic artificial cilia with microfluidic pumping capability. Lab Chip 16, 2277–2286 (2016).

    Article 

    Google Scholar
     

  • Iverson, B. D. & Garimella, S. V. Recent advances in microscale pumping technologies: a review and evaluation. Microfluid. Nanofluid. 5, 145–174 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Blake, J. R. & Sleigh, M. A. Mechanics of ciliary locomotion. Biol. Rev. 49, 85–125 (1974).

    CAS 
    Article 

    Google Scholar
     

  • Van Houten, J. Two mechanisms of chemotaxis in Paramecium. J. Comp. Physiol. 127, 167–174 (1978).

    Article 

    Google Scholar
     

  • Sleigh, M. A., Blake, J. R. & Liron, N. The propulsion of mucus by cilia. Am. Rev. Respir. Dis. 137, 726–741 (1988).

    CAS 
    Article 

    Google Scholar
     

  • Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Lauga, E. Propulsion in a viscoelastic fluid. Phys. Fluids 19, 083104 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Satir, P., Heuser, T. & Sale, W. S. A structural basis for how motile cilia beat. BioScience 64, 1073–1083 (2014).

    Article 

    Google Scholar
     

  • Sanchez, T., Welch, D., Nicastro, D. & Dogic, Z. Cilia-like beating of active microtubule bundles. Science 333, 456–459 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, X., Guo, J., Fu, X., Zhang, D. & Zhao, Y. Tailoring flexible arrays for artificial cilia actuators. Adv. Intell. Syst. 3, 2000225 (2020).

    Article 

    Google Scholar
     

  • Milana, E. et al. Metachronal patterns in artificial cilia for low Reynolds number fluid propulsion. Sci. Adv. 6, eabd2508 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • van Oosten, C. L., Bastiaansen, C. W. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8, 677–682 (2009).

    ADS 
    Article 

    Google Scholar
     

  • Li, M., Kim, T., Guidetti, G., Wang, Y. & Omenetto, F. G. Optomechanically actuated microcilia for locally reconfigurable surfaces. Adv. Mater. 32, 2004147 (2020).

    CAS 
    Article 

    Google Scholar
     

  • den Toonder, J. et al. Artificial cilia for active micro-fluidic mixing. Lab Chip 8, 533–541 (2008).

    Article 

    Google Scholar
     

  • Vilfan, M. et al. Self-assembled artificial cilia. Proc. Natl Acad. Sci. 107, 1844–1847 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Khaderi, S. N., den Toonder, J. M. J. & Onck, P. R. Magnetic artificial cilia for microfluidic propulsion. Adv. Appl. Mech. 48, 1–78 (2015).

    Article 

    Google Scholar
     

  • Friese, M. E. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547–549 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhang, S., Cui, Z., Wang, Y. & den Toonder, J. M. Metachronal actuation of microscopic magnetic artificial cilia generates strong microfluidic pumping. Lab Chip 20, 3569–3581 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Dong, X. et al. Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination. Sci. Adv. 6, eabc9323 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chen, C.-Y., Chen, C.-Y., Lin, C.-Y. & Hu, Y.-T. Magnetically actuated artificial cilia for optimum mixing performance in microfluidics. Lab Chip 13, 2834–2839 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Miskin, M. Z. et al. Electronically integrated, mass-manufactured, microscopic robots. Nature 584, 557–561 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, Q. et al. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics. Sci. Robot. 6, eabe6663 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    ADS 
    Article 

    Google Scholar
     

  • Machin, K. E. Wave propagation along flagella. J. Exp. Biol. 35, 796–806 (1958).

    Article 

    Google Scholar
     

  • Wiggins, C. H. & Goldstein, R. E. Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80, 3879–3882 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Khaderi, S. N., Baltussen, M. G. H. M., Anderson, P. D., den Toonder, J. M. J. & Onck, P. R. Breaking of symmetry in microfluidic propulsion driven by artificial cilia. Phys. Rev. E 82, 027302 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yu, T. S., Lauga, E. & Hosoi, A. E. Experimental investigations of elastic tail propulsion at low Reynolds number. Phys. Fluids 18, 091701 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Lauga, E. The Fluid Dynamics of Cell Motility (Cambridge Univ. Press, 2020).

  • Cox, R. G. The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791–810 (1970).

    ADS 
    Article 

    Google Scholar
     

  • De Canio, G., Lauga, E. & Goldstein, R. E. Spontaneous oscillations of elastic filaments induced by molecular motors. J. R. Soc. Interface 14, 20170491 (2017).

    Article 

    Google Scholar
     

  • Quennouz, N., Shelley, M., du Roure, O. & Lindner, A. Transport and buckling dynamics of an elastic fibre in a viscous cellular flow. J. Fluid Mech. 769, 387–402 (2015).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Blake, J. R. A note on the image system for a stokeslet in a no-slip boundary. Math. Proc. Cambridge Philos. Soc. 70, 303–310 (1971).

    ADS 
    Article 

    Google Scholar
     

  • Khaderi, S. N., den Toonder, J. M. J. & Onck, P. R. Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis. J. Fluid Mech. 688, 44–65 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Powers, T. R. Dynamics of filaments and membranes in a viscous fluid. Rev. Mod. Phys. 82, 1607–1631 (2010).

    ADS 
    Article 

    Google Scholar
     

  • Audoly, B. & Pomeau, Y. Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells (Oxford Univ. Press, 2010).

  • Liron, N. & Mochon, S. Stokes flow for a stokeslet between two parallel flat plates. J. Eng. Math. 10, 287–303 (1976).

    Article 

    Google Scholar
     

  • Cortez, R. The method of regularized stokeslets. SIAM J. Sci. Comput. 23, 1204–1225 (2001).

    MathSciNet 
    Article 

    Google Scholar
     

  • Source link