April 26, 2024
Neuropathic pain caused by miswiring and abnormal end organ targeting – Nature

Neuropathic pain caused by miswiring and abnormal end organ targeting – Nature

  • Devor, M. in Wall and Melzack’s Textbook of Pain 5th edn (eds McMahon, S. B. & Koltzenburg, M.) 905–927 (Churchill Livingstone, 2006).

  • Campbell, J. N. & Meyer, R. A. Mechanisms of neuropathic pain. Neuron 52, 77–92 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Finnerup, N. B., Kuner, R. & Jensen, T. S. Neuropathic pain: from mechanisms to treatment. Physiol. Rev. 101, 259–301 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Campbell, J. N., Raja, S. N., Meyer, R. A. & Mackinnon, S. E. Myelinated afferents signal the hyperalgesia associated with nerve injury. Pain 32, 89–94 (1988).

    PubMed 
    Article 

    Google Scholar
     

  • Dhandapani, R. et al. Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons. Nat. Commun. 9, 1640 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tashima, R. et al. Optogenetic activation of non-nociceptive Aβ fibers induces neuropathic pain-like sensory and emotional behaviors after nerve injury in rats. eNeuro 5, https://doi.org/10.1523/eneuro.0450-17.2018 (2018).

  • Moehring, F., Halder, P., Seal, R. P. & Stucky, C. L. Uncovering the cells and circuits of touch in normal and pathological settings. Neuron 100, 349–360 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ji, R.-R. & Strichartz, G. Cell signaling and the genesis of neuropathic pain. Sci. STKE 2004, re14 (2004).

    Article 

    Google Scholar
     

  • Beggs, S., Trang, T. & Salter, M. W. P2X4R+ microglia drive neuropathic pain. Nat. Neurosci. 15, 1068–1073 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ji, R. R., Donnelly, C. R. & Nedergaard, M. Astrocytes in chronic pain and itch. Nat. Rev. Neurosci. 20, 667–685 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, G., Zhang, Y. Q., Qadri, Y. J., Serhan, C. N. & Ji, R. R. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100, 1292–1311 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cheng, L. et al. Identification of spinal circuits involved in touch-evoked dynamic mechanical pain. Nat. Neurosci. 20, 804–814 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peirs, C. et al. Dorsal horn circuits for persistent mechanical pain. Neuron 87, 797–812 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Foster, E. et al. Targeted ablation, silencing, and activation establish glycinergic dorsal horn neurons as key components of a spinal gate for pain and itch. Neuron 85, 1289–1304 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kuner, R. & Flor, H. Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 18, 20–30 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Burnett, M. G. & Zager, E. L. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg. Focus 16, E1 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Griffin, J. W., Pan, B., Polley, M. A., Hoffman, P. N. & Farah, M. H. Measuring nerve regeneration in the mouse. Exp. Neurol. 223, 60–71 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jessen, K. R., Mirsky, R. & Lloyd, A. C. Schwann cells: development and role in nerve repair. Cold Spring Harb. Perspect. Biol. 7, a020487 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bolívar, S., Navarro, X. & Udina, E. Schwann cell role in selectivity of nerve regeneration. Cells 9, 2131 (2020).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Taylor, K. S., Anastakis, D. J. & Davis, K. D. Chronic pain and sensorimotor deficits following peripheral nerve injury. Pain 151, 582–591 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Peleshok, J. C. & Ribeiro-da-Silva, A. Delayed reinnervation by nonpeptidergic nociceptive afferents of the glabrous skin of the rat hindpaw in a neuropathic pain model. J. Comp. Neurol. 519, 49–63 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kerr, J. N. & Denk, W. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9, 195–205 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Basbaum, A. I., Bautista, D. M., Scherrer, G. & Julius, D. Cellular and molecular mechanisms of pain. Cell 139, 267–284 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Agarwal, N., Offermanns, S. & Kuner, R. Conditional gene deletion in primary nociceptive neurons of trigeminal ganglia and dorsal root ganglia. Genesis 38, 122–129 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Decosterd, I. & Woolf, C. J. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149–158 (2000).

    PubMed 
    Article 

    Google Scholar
     

  • Djouhri, L., Fang, X., Koutsikou, S. & Lawson, S. N. Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain 153, 1824–1836 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Song, Y. et al. The mechanosensitive ion channel piezo inhibits axon regeneration. Neuron 102, 373–389 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zigmond, R. E. & Echevarria, F. D. Macrophage biology in the peripheral nervous system after injury. Prog. Neurobiol. 173, 102–121 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Monk, K. R., Feltri, M. L. & Taveggia, C. New insights on Schwann cell development. Glia 63, 1376–1393 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weinstein, B. M. Vessels and nerves: marching to the same tune. Cell 120, 299–302 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abraira, V. E. & Ginty, D. D. The sensory neurons of touch. Neuron 79, 618–639 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fleming, M. S. & Luo, W. The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors. Front. Biol. 8, 408–420 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Neubarth, N. L. et al. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 368, eabb2751 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dogiel, A. S. Die Nervenendigunden in Meissnerschen tasktköperen. Monthly Int. J. Anat. Physiol. 9, 76–85 (1892).


    Google Scholar
     

  • Cauna, N. Nerve supply and nerve endings in Meissner’s corpuscles. Am. J. Anat. 99, 315–350 (1956).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Johansson, O., Fantini, F. & Hu, H. Neuronal structural proteins, transmitters, transmitter enzymes and neuropeptides in human Meissner’s corpuscles: a reappraisal using immunohistochemistry. Arch. Dermatol. Res. 291, 419–424 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paré, M., Elde, R., Mazurkiewicz, J. E., Smith, A. M. & Rice, F. L. The Meissner corpuscle revised: a multiafferented mechanoreceptor with nociceptor immunochemical properties. J. Neurosci. 21, 7236–7246 (2001).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ishida-Yamamoto, A., Senba, E. & Tohyama, M. Calcitonin gene-related peptide- and substance P-immunoreactive nerve fibers in Meissner’s corpuscles of rats: an immunohistochemical analysis. Brain Res. 453, 362–366 (1988).

    CAS 
    Article 

    Google Scholar
     

  • Seal, R. P. et al. Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462, 651–655 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Delfini, M.-C. et al. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep. 5, 378–388 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abrahamsen, B. et al. The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321, 702–705 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rivers, W. H. R. & Head, H. A human experiment in nerve division. Brain 31, 323–450 (1908).

    Article 

    Google Scholar
     

  • Compston, A. A human experiment in nerve division by W. H. R. Rivers MD FRS, Fellow of St John’s College, Cambridge and Henry Head MD FRS, Physician to the London Hospital, Brain 1908: 31; 323–450. Brain 132, 2903–2905 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Woolf, C. J., Shortland, P. & Coggeshall, R. E. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355, 75–78 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bogen, O., Alessandri-Haber, N., Chu, C., Gear, R. W. & Levine, J. D. Generation of a pain memory in the primary afferent nociceptor triggered by PKCε activation of CPEB. J. Neurosci. 32, 2018–2026 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Calvo, M., Dawes, J. M. & Bennett, D. L. The role of the immune system in the generation of neuropathic pain. Lancet Neurol. 11, 629–642 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Abdo, H. et al. Specialized cutaneous Schwann cells initiate pain sensation. Science 365, 695–699 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rinwa, P. et al. Demise of nociceptive Schwann cells causes nerve retraction and pain hyperalgesia. Pain 162, 1816–1827 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Maksimovic, S. et al. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509, 617–621 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Woo, S. H. et al. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509, 622–626 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arcourt, A. et al. Touch receptor-derived sensory information alleviates acute pain signaling and fine-tunes nociceptive reflex coordination. Neuron 93, 179–193 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Melzack, R. & Wall, P. D. Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prescott, S. A., Ma, Q. & De Koninck, Y. Normal and abnormal coding of somatosensory stimuli causing pain. Nat. Neurosci. 17, 183–191 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Duan, B., Cheng, L. & Ma, Q. Spinal circuits transmitting mechanical pain and itch. Neurosci. Bull. 34, 186–193 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Liu, Y. et al. Touch and tactile neuropathic pain sensitivity are set by corticospinal projections. Nature 561, 547–550 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gangadharan, V. et al. Peripheral calcium-permeable AMPA receptors regulate chronic inflammatory pain in mice. J. Clin. Invest. 121, 1608–1623 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Theer, P. & Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A 23, 3139–3149 (2006).

    ADS 
    Article 

    Google Scholar
     

  • Lowe, D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004).

    Article 

    Google Scholar
     

  • Bay, H., Tuytelaars, T. & Van Gool, L. SURF: Speeded Up Robust Features. In Proc. 9th European Conference on Computer Vision (eds Leonardis, A., Bischof, H. & Pinz, A.) 404–417 (Springer, 2006).

  • Wahba, G. Spline Models for Observational Data (Society for Industrial and Applied Mathematics, 1990).

  • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hennig, B. P. et al. Large-scale low-cost NGS library preparation using a robust Tn5 purification and tagmentation protocol. G3 8, 79–89 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bauer, S & Gagneur, J. Mgsa: Model-based gene set analysis. R version 1.42.0 https://github.com/sba1/mgsa-bioc (2021).

  • Jew, B. et al. Accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Nat. Commun. 11, 1971 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hua, Y., Laserstein, P. & Helmstaedter, M. Large-volume en-bloc staining for electron microscopy-based connectomics. Nat. Commun. 6, 7923 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Denk., W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Karimi, A., Odenthal, J., Drawitsch, F., Boergens, K. M. & Helmstaedter, M. Cell-type specific innervation of cortical pyramidal cells at their apical dendrites. eLife 9, e46876 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Motta, A. et al. Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366, eaay3134 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boergens, K. et al. webKnossos: efficient online 3D data annotation for connectomics. Nat. Methods 14, 691–694 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Selvaraj, D. et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain. Cancer Cell 27, 780–796 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schweizerhof, M. et al. Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain. Nat. Med. 15, 802–807 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Source link