May 7, 2024
Qubit teleportation between non-neighbouring nodes in a quantum network – Nature

Qubit teleportation between non-neighbouring nodes in a quantum network – Nature

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    ADS 
    MathSciNet 
    Article 

    Google Scholar
     

  • Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Olmschenk, S. et al. Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Nölleke, C. et al. Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Langenfeld, S. et al. Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett. 126, 130502 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A. & Smith, A. Secure multiparty quantum computation with (only) a strict honest majority. In Proc. 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06) 249–258 (IEEE, 2006).

  • Arora, A. S., Roland, J. & Weis, S. Quantum weak coin flipping. In Proc. 51st Annual ACM Symposium on Theory of Computing (STOC 2019) 205–216 (ACM, 2019).

  • Van Meter, R. Quantum Networking (Wiley, 2014).

  • Bao, X.-H. et al. Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl Acad. Sci. 109, 20347–20351 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cabrillo, C., Cirac, J. I., García-Fernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bose, S., Knight, P. L., Plenio, M. B. & Vedral, V. Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Legero, T., Wilk, T., Kuhn, A. & Rempe, G. Time-resolved two-photon quantum interference. Appl. Phys. B 77, 797–802 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bradley, C. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

    CAS 

    Google Scholar
     

  • Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 7, 11526 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • van Enk, S. J., Lütkenhaus, N. & Kimble, H. J. Experimental procedures for entanglement verification. Phys. Rev. A 75, 052318 (2007).

    ADS 
    Article 

    Google Scholar
     

  • Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computation. In Proc. 2009 50th Annual IEEE Symposium on Foundations of Computer Science 517–526 (IEEE, 2009).

  • Rose, B. C. et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science 361, 60–63 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Nguyen, C. et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Trusheim, M. E. et al. Transform-limited photons from a coherent tin-vacancy spin in diamond. Phys. Rev. Lett. 124, 023602 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Son, N. T. et al. Developing silicon carbide for quantum spintronics. Appl. Phys. Lett. 116, 190501 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lukin, D. M., Guidry, M. A. & Vučković, J. Integrated quantum photonics with silicon carbide: challenges and prospects. PRX Quantum 1, 020102 (2020).

    Article 

    Google Scholar
     

  • Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chen, S., Raha, M., Phenicie, C. M., Ourari, S. & Thompson, J. D. Parallel single-shot measurement and coherent control of solid-state spins below the diffraction limit. Science 370, 592–595 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ruf, M., Wan, N. H., Choi, H., Englund, D. & Hanson, R. Quantum networks based on color centers in diamond. J. Appl. Phys. 130, 070901 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Grein, M. E., Stevens, M. L., Hardy, N. D. & Benjamin Dixon, P. Stabilization of long, deployed optical fiber links for quantum networks. In Proc. 2017 Conference on Lasers and Electro-Optics (CLEO 2017) 1–2 (IEEE, 2017).

  • Dahlberg, A. et al. A link layer protocol for quantum networks. In Proc. ACM Special Interest Group on Data Communication (SIGCOMM ’19) 159–173, (ACM, 2019).

  • Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Source link