May 25, 2024
Concurrent self-assembly of RGB microLEDs for next-generation displays – Nature

Concurrent self-assembly of RGB microLEDs for next-generation displays – Nature

  • Anwar, A. R. et al. Recent progress in micro-LED-based display technologies. Laser Photonics Rev. 16, 2100427 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Huang, Y., Hsiang, E., Deng, M. & Wu, S. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9, 105 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C., Chen, H., Liao, J., Yu, C. & Wu, M. Fabrication and characterization of active-matrix 960 × 540 blue GaN-based micro-LED display. IEEE J. Quantum Electron. 55, 1–6 (2019).

    Article 

    Google Scholar
     

  • Kim, R. et al. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881–3886 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, H., Zhang, J., Davitt, K. M., Song, Y. & Nurmikko, A. V. Application of blue–green and ultraviolet micro-LEDs to biological imaging and detection. J. Phys. D Appl. Phys. 41, 094013 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Gong, Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials. 11, 842 (2021).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meitl, M. et al. Passive matrix displays with transfer-printed microscale inorganic LEDs. SID Symp. Dig. Tech. Pap. 47, 743–746 (2016).

    Article 

    Google Scholar
     

  • Kim, J., Kim, B., Lim, D. & Shin, B. Control of adhesion force for micro LED transfer using a magnetorheological elastomer. J. Mech. Sci. Technol. 33, 5321–5325 (2019).

    Article 

    Google Scholar
     

  • Li, J., Yan, G., Luo, B. & Liu, Z. Study of transfer-printing technologies for micro-LED displays. SID Symp. Dig. Tech. Pap. 51, 125–128 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yeh, H. J. & Smith, J. S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photon. Technol. Lett. 6, 706–708 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Talghader, J. J., Tu, J. K. & Smith, J. S. Integration of fluidically self-assembled optoelectronic devices using a silicon-based process. IEEE Photon. Technol. Lett. 7, 1321–1323 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Jacobs, H. O., Tao, A. R., Schwartz, A., Gracias, D. H. & Whitesides, G. M. Fabrication of a cylindrical display by patterned assembly. Science 296, 323–325 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stauth, S. A. & Parviz, B. A. Self-assembled single-crystal silicon circuits on plastic. Proc. Natl Acad. Sci. 103, 13922–13927 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, J. & Bohringer, K. F. Parallel micro component-to-substrate assembly with controlled poses and high surface coverage. J. Micromech. Microeng. 16, 721–730 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Cho, S., Lee, D. & Kwon, S. in Proc. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) 402–404 (IEEE, 2019).

  • Park, S. et al. A first implementation of an automated reel-to-reel fluidic self-assembly machine. Adv. Mater. 26, 5942–5949 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knuesel, R. J. & Jacobs, H. O. Self-assembly of microscopic chiplets at a liquid–liquid–solid interface forming a flexible segmented monocrystalline solar cell. Proc. Natl Acad. Sci. 107, 993–998 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. et al. Approaching roll-to-roll fluidic self-assembly: relevant parameters, machine design, and applications. J. Microelectromech. Syst. 24, 1928–1937 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Mertens, R. eLux installs a new automated fluidic assembly R&D tool, unveils a new microLED display prototype. MICROLEC-info https://www.microled-info.com/elux-installs-new-automated-fluidic-assembly-rd-tool-unveils-new-microled (2021).

  • Virey, E. H. & Baron, N. Status and prospects of microLED displays. SID Symp. Dig. Tech. Pap. 49, 593–596 (2018).

    Article 

    Google Scholar
     

  • Park, H. et al. Horizontally assembled green InGaN nanorod LEDs: scalable polarized surface emitting LEDs using electric-field assisted assembly. Sci. Rep. 6, 28312 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, K. S., Hoo, J. H., Baskaran, R. & Bohringer, K. F. Parallel heterogeneous integration of chip-scale parts by self-assembly. J. Microelectromech. Syst. 21, 1273–1275 (2012).

    Article 

    Google Scholar
     

  • Wang, X., Wang, X. & Gascoyne, P. R. C. General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method. J. Electrostat. 39, 277–295 (1997).

    Article 

    Google Scholar
     

  • Gangwal, S., Cayre, O. J. & Velev, O. D. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. Langmuir 24, 13312–13320 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cetin, B. & Li, D. Dielectrophoresis in microfluidics technology. Electrophoresis 32, 2410–2427 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Honegger, T., Lecarme, O., Berton, K. & Peyrade, D. 4-D dielectrophoretic handling of Janus particles in a microfluidic chip. Microelectron. Eng. 87, 756–759 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mayer, T. S., Jackson, T. N. & Nordquist, C. D. Electro-fluidic assembly process for integration of electronic devices onto a substrate. US patent US6687987B2 (2004).

  • Freer, E. M., Grachev, O., Duan, X., Martin, S. & Stumbo, D. P. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Nanotechnol. 5, 525–530 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pesch, G. R. & Du, F. A review of dielectrophoretic separation and classification of non-biological particles. Electrophoresis 42, 134–152 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ginoudi, A. et al. in Proc. Fourth International Conference on Indium Phosphide and Related Materials 389–392 (IEEE, 1992).

  • Source link