May 5, 2024

Cotranslational prolyl hydroxylation is essential for flavivirus biogenesis – Nature

  • 1.

    Kumar, N. et al. Host-directed antiviral therapy. Clin. Microbiol. Rev. 33, e00168 (2020).

  • 2.

    Stern-Ginossar, N., Thompson, S. R., Mathews, M. B. & Mohr, I. Translational control in virus-infected cells. Cold Spring Harb. Perspect. Biol. 11, a033001 (2019).

  • 3.

    Nicholson, B. L. & White, K. A. Functional long-range RNA–RNA interactions in positive-strand RNA viruses. Nat. Rev. Microbiol. 12, 493–504 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Aviner, R. & Frydman, J. Proteostasis in viral infection: unfolding the complex virus–chaperone interplay. Cold Spring Harb. Perspect. Biol. 12, a034090 (2020).

  • 5.

    Jaafar, Z. A. & Kieft, J. S. Viral RNA structure-based strategies to manipulate translation. Nat. Rev. Microbiol. 17, 110–123 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Mizuno, C. M. et al. Numerous cultivated and uncultivated viruses encode ribosomal proteins. Nat. Commun. 10, 752 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 7.

    Macejak, D. G. & Sarnow, P. Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells. J. Virol. 66, 1520–1527 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Yang, W. et al. G3BP1 inhibits RNA virus replication by positively regulating RIG-I-mediated cellular antiviral response. Cell Death Dis. 10, 946 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Limjindaporn, T. et al. Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production. Biochem. Biophys. Res. Commun. 379, 196–200 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Sweeney, T. R., Abaeva, I. S., Pestova, T. V. & Hellen, C. U. T. The mechanism of translation initiation on type 1 picornavirus IRESs. EMBO J. 33, 76–92 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Lee, K.-M., Chen, C.-J. & Shih, S.-R. Regulation mechanisms of viral IRES-driven translation. Trends Microbiol. 25, 546–561 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Zhang, Y., Gao, W., Li, J., Wu, W. & Jiu, Y. The role of host cytoskeleton in flavivirus infection. Virol. Sin. 34, 30–41 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Dougherty, J., Tsai, W.-C. & Lloyd, R. Multiple poliovirus proteins repress cytoplasmic RNA granules. Viruses 7, 6127–6140 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Michalski, D. et al. Zika virus noncoding sfRNAs sequester multiple host-derived RNA-binding proteins and modulate mRNA decay and splicing during infection. J. Biol. Chem. 294, 16282–16296 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Moon, S. L. et al. Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology 485, 322–329 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Ooi, Y. S. et al. An RNA-centric dissection of host complexes controlling flavivirus infection. Nat. Microbiol. 4, 2369–2382 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 17.

    Lenarcic, E. M., Landry, D. M., Greco, T. M., Cristea, I. M. & Thompson, S. R. Thiouracil cross-linking mass spectrometry: a cell-based method to identify host factors involved in viral amplification. J. Virol. 87, 8697–8712 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Pallarés, H. M. et al. Zika virus subgenomic flavivirus RNA generation requires cooperativity between duplicated RNA structures that are essential for productive infection in human cells. J. Virol. 94, e00343 (2020).

  • 19.

    Zeng, J. et al. The Zika virus capsid disrupts corticogenesis by suppressing Dicer activity and miRNA biogenesis. Cell Stem Cell 27, 618–632 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Rodríguez Pulido, M., Serrano, P., Sáiz, M. & Martínez-Salas, E. Foot-and-mouth disease virus infection induces proteolytic cleavage of PTB, eIF3a,b, and PABP RNA-binding proteins. Virology 364, 466–474 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 21.

    Hunt, S. L., Hsuan, J. J., Totty, N. & Jackson, R. J. unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev. 13, 437–448 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Andreev, D. E. et al. Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation. Nucleic Acids Res. 40, 5602–5614 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Iwasaki, S., Floor, S. N. & Ingolia, N. T. Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature 534, 558–561 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 24.

    Li-Weber, M. Molecular mechanisms and anti-cancer aspects of the medicinal phytochemicals rocaglamides (=flavaglines). Int. J. Cancer 137, 1791–1799 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Yang, S. N. Y. et al. RK-33 is a broad-spectrum antiviral agent that targets DEAD-box RNA helicase DDX3X. Cells 9, 170 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Kramer, G., Shiber, A. & Bukau, B. Mechanisms of cotranslational maturation of newly synthesized proteins. Annu. Rev. Biochem. 88, 337–364 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 27.

    Gamerdinger, M., Hanebuth, M. A., Frickey, T. & Deuerling, E. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 348, 201–207 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Taguwa, S. et al. Zika virus dependence on host Hsp70 provides a protective strategy against infection and disease. Cell Rep. 26, 906–920 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Taguwa, S. et al. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell 163, 1108–1123 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Kirk, T. Z., Evans, J. S. & Veis, A. Biosynthesis of type I procollagen. Characterization of the distribution of chain sizes and extent of hydroxylation of polysome-associated pro-alpha-chains. J. Biol. Chem. 262, 5540–5545 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 31.

    DiChiara, A. S. et al. Mapping and exploring the collagen-I proteostasis network. ACS Chem. Biol. 11, 1408–1421 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Ishikawa, Y. & Bächinger, H. P. A molecular ensemble in the rER for procollagen maturation. Biochim. Biophys. Acta 1833, 2479–2491 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Ueno, T. et al. Enhancement of procollagen biosynthesis by p180 through augmented ribosome association on the endoplasmic reticulum in response to stimulated secretion. J. Biol. Chem. 285, 29941–29950 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Li, Y., Li, Q., Wong, Y. L., Liew, L. S. Y. & Kang, C. Membrane topology of NS2B of dengue virus revealed by NMR spectroscopy. Biochim. Biophys. Acta 1848, 2244–2252 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L. & Raines, R. T. Conformational stability of collagen relies on a stereoelectronic effect. J. Am. Chem. Soc. 123, 777–778 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Naduthambi, D. & Zondlo, N. J. Stereoelectronic tuning of the structure and stability of the trp cage miniprotein. J. Am. Chem. Soc. 128, 12430–12431 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Guo, J. et al. pVHL suppresses kinase activity of Akt in a proline-hydroxylation-dependent manner. Science 353, 929–932 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Burrill, C. P., Strings, V. R. & Andino, R. Poliovirus: generation, quantification, propagation, purification, and storage. Curr. Protoc. Microbiol. 128, 15H.1.1–15H.1.27 (2013).


    Google Scholar
     

  • 39.

    Kinney, R. M. et al. Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 230, 300–308 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Shah, P. S. et al. Comparative flavivirus–host protein interaction mapping reveals mechanisms of dengue and Zika virus pathogenesis. Cell 175, 1931–1945 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 43.

    Gamarnik, A. V. & Andino, R. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev. 12, 2293–2304 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Di Veroli, G. Y. et al. An automated fitting procedure and software for dose–response curves with multiphasic features. Sci. Rep. 5, 14701 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 45.

    Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 46.

    Cox, J. & Mann, M. 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinf. 13, S12 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Imami, K. et al. Phosphorylation of the ribosomal protein RPL12/uL11 affects translation during mitosis. Mol. Cell 72, 84–98 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 48.

    Simsek, D. et al. The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell 169, 1051–1065 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Fontaine, K. A. et al. The cellular NMD pathway restricts Zika virus infection and is targeted by the viral capsid protein. MBio 9, e02126-18 (2018).

  • 50.

    Göertz, G. P. et al. Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA 116, 19136–19144 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 51.

    Kanodia, P. et al. A rapid and simple quantitative method for specific detection of smaller coterminal RNA by PCR (DeSCo-PCR): application to the detection of viral subgenomic RNAs. RNA 26, 888–901 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Lloyd, R. E. Nuclear proteins hijacked by mammalian cytoplasmic plus strand RNA viruses. Virology 479–480, 457–474 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 53.

    Jagdeo, J. M. et al. Heterogeneous nuclear ribonucleoprotein M facilitates enterovirus infection. J. Virol. 89, 7064–7078 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Gustin, K. E. & Sarnow, P. Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J. 20, 240–249 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 55.

    Silvera, D., Gamarnik, A. V. & Andino, R. The N-terminal K homology domain of the poly(rC)-binding protein is a major determinant for binding to the poliovirus 5′-untranslated region and acts as an inhibitor of viral translation. J. Biol. Chem. 274, 38163–38170 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 56.

    Dave, P. et al. Strand-specific affinity of host factor hnRNP C1/C2 guides positive to negative-strand ratio in Coxsackievirus B3 infection. RNA Biol. 16, 1286–1299 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Source link