April 25, 2024

Mobility gradients yield rubbery surfaces on top of polymer glasses – Nature

  • 1.

    Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic stability. Science 315, 353–356 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Ediger, M. D. Perspective: highly stable vapor-deposited glasses. J. Chem. Phys. 147, 210901 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Dutcher, J. R. & Ediger, M. D. Glass surfaces not so glassy. Science 319, 577−578 (2008).

    Article 

    Google Scholar
     

  • 4.

    Jones, R. A. L. Glasses with liquid-like surfaces. Nat. Mater. 2, 645–646 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Napolitano, S., Glynos, E. & Tito, N. B. Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog. Phys. 80, 036602 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Schweizer, K. S. & Simmons, D. S. Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. J. Chem. Phys. 151, 240901 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695–700 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Pye, J. E., Rohald, K. A., Baker, E. A. & Roth, C. B. Physical aging in ultrathin polystyrene films: evidence of a gradient in dynamics at the free surface and its connection to the glass transition temperature reductions. Macromolecules 43, 8296–8303 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Yu, L. Surface mobility of molecular glasses and its importance in physical stability. Adv. Drug Deliv. Rev. 100, 3–9 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Jackson, C. L. & McKenna, G. B. The glass transition of organic liquids confined to small pores. J. Non-Cryst. Solids 131–133, 221–224 (1991).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Keddie, J. L., Jones, R. A. L. & Cory, R. A. Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59–64 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Fakhraai, Z. & Forrest, J. A. Measuring the surface dynamics of glassy polymers. Science 319, 600–604 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Paeng, K., Swallen, S. F. & Ediger, M. D. Direct measurement of molecular motion in freestanding polystyrene thin films. J. Am. Chem. Soc. 133, 8444–8447 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Ediger, M. D. & Forrest, J. A. Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471–478 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Yang, Z., Fujii, Y., Lee, F. K., Lam, C-H. & Tsui, O. K. C. Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676–1679 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 17.

    Chai, Y. et al. A direct quantitative measure of surface mobility in a glassy polymer. Science 343, 994–999 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Li, Y. et al. Surface diffusion in glasses of rod-like molecules posaconazole and itraconazole: effect of interfacial molecular alignment and bulk penetration. Soft Matter 16, 5062–5070 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Flier, B. M. I. et al. Heterogeneous diffusion in thin polymer films as observed by high-temperature single-molecule fluorescence microscopy. J. Am. Chem. Soc. 134, 480–488 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Xu, Q. et al. Decoupling role of film thickness and interfacial effect on polymer thin film dynamics. ACS Macro Lett. 10, 1–8 (2021).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Toney, M. F. et al. Near-surface alignment of polymers in rubbed films. Nature 374, 709–711 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Maeda, N., Chen, N., Tirrell, M. & Israelachvili, J. N. Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297, 379–382 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Tanaka, K., Takahara, A. & Kajiyama, T. Rheological analysis of surface relaxation process of monodisperse polystyrene films. Macromolecules 33, 7588–7593 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Ma, J. et al. Fast surface dynamics enabled cold joining of metallic glasses. Sci. Adv. 5, eaax7256 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Li, X. et al. Low‐temperature processing of polymer nanoparticles for bioactive composites. J. Polym. Sci. B 54, 2514–2520 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Chen, F., Lam, C.-H. & Tsui, O. K. C. The surface mobility of glasses. Science 343, 975–976 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Sokolov, A. P. & Schweizer, K. S. Resolving the mystery of the chain friction mechanism in polymer liquids. Phys. Rev. Lett. 102, 248301 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Hung, J.-H., Mangalara, J. H. & Simmons, D. S. Heterogeneous rouse model predicts polymer chain translational normal mode decoupling. Macromolecules 51, 2887–2898 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

  • 30.

    Carré, A., Gastel, J.-C. & Shanahan, M. E. R. Viscoelastic effects in the spreading of liquids. Nature 379, 432–434 (1996).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Shanahan, M. E. R. & Carré, A. Spreading and dynamics of liquid drops involving nanometric deformations on soft substrates. Colloids Surf. A 206, 115–123 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Jerison, E. R., Xu, Y., Wilen, L. A. & Dufresne, E. R. Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett. 106, 186103 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Lu, H., Chen, W. & Russell, T. P. Relaxation of thin films of polystyrene floating on ionic liquid surface. Macromolecules 42, 9111–9117 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Fetters, L. J., Lohse, D. J., Richter, D., Witten, T. A. & Zirkel, A. Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27, 4639–4647 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Plazek, D. J. & O’Rourke, V. M. Viscoelastic behavior of low molecular weight polystyrene. J. Polym. Sci. A-2 9, 209–243 (1971).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Yang, J. & Schweizer, K. S. Glassy dynamics and mechanical response in dense fluids of soft repulsive spheres. II. Shear modulus, relaxation-elasticity connections, and rheology. J. Chem. Phys. 134, 204909 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Humphrey, W., Dalke, A. & Schulten, K. VMD — visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Lang, R. J. & Simmons, D. S. Interfacial dynamic length scales in the glass transition of a model freestanding polymer film and their connection to cooperative motion. Macromolecules 46, 9818–9825 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Khantha, M. & Balakrishnan, V. First passage time distributions for finite one-dimensional random walks. Pramana 21, 111–122 (1983).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Kröger, M. Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems. Comput. Phys. Commun. 168, 209–232 (2005).

  • 41.

    Si, L., Massa, M. V., Dalnoki-Veress, K., Brown, H. R. & Jones, R. A. L. Chain entanglement in thin freestanding polymer films. Phys. Rev. Lett. 94, 127801 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Brown, H. R. & Russell, T. P. Entanglements at polymer surfaces and interfaces. Macromolecules 29, 798–800 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Source link