May 25, 2024
Depolymerization of plastics by means of electrified spatiotemporal heating – Nature

Depolymerization of plastics by means of electrified spatiotemporal heating – Nature

  • Häußler, M., Eck, M., Rothauer, D. & Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 590, 423–427 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sharuddin, S. D. A., Abnisa, F., Daud, W. M. A. W. & Aroua, M. K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 115, 308–326 (2016).

    Article 

    Google Scholar
     

  • Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Falco, F. D., Cocca, M., Avella, M. & Thompson, R. C. Microfiber release to water, via laundering, and to air, via everyday use: a comparison between polyester clothing with differing textile parameters. Environ. Sci. Technol. 54, 3288–3296 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ragaert, K., Delva, L. & Geem, K. V. Mechanical and chemical recycling of solid plastic waste. Waste Manage. 69, 24–58 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Korley, L. T. J., Epps, T. H., Helms, B. A. & Ryan, A. J. Toward polymer upcycling—adding value and tackling circularity. Science 373, 66–69 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, E. A. & Williams, P. T. Analysis of products derived from the fast pyrolysis of plastic waste. J. Anal. Appl. Pyrolysis 40, 347–363 (1997).

    Article 

    Google Scholar
     

  • Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S., Kots, P. A., Vance, B. C., Danielson, A. & Vlachos, D. G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 7, eabf8283 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Algozeeb, W. A. et al. Flash graphene from plastic waste. ACS Nano 14, 15595–15604 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H., Rosenthal, C. & Schmidt, L. D. Oxidative pyrolysis of polystyrene into styrene monomers in an autothermal fixed-bed catalytic reactor. ChemSusChem 5, 1883–1887 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaminsky, W. & Franck, J. Monomer recovery by pyrolysis of poly(methyl methacrylate) (PMMA). J. Anal. Appl. Pyrolysis 19, 311–318 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Zolghadr, A. et al. On the method of pulse-heated analysis of solid reactions (PHASR) for polyolefin pyrolysis. ChemSusChem 13, 4214–4227 (2021).

    Article 

    Google Scholar
     

  • Demirbaş, A. Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis. Energy Sources 27, 1313–1319 (2005).

    Article 

    Google Scholar
     

  • Lin, Y.-H. & Sharratt, P. N. Catalytic conversion of polyolefins to chemicals and fuels over various cracking catalysts. Energy Fuels 12, 767–774 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Scotp, D. S., Majerski, P., Piskorz, J., Radlein, D. & Barnickel, M. Production of liquid fuels from waste plastics. Can. J. Chem. Eng. 77, 1021–1027 (1999).

    Article 

    Google Scholar
     

  • Lovás, P., Hudec, P., Jambor, B., Hájeková, E. & Horňáček, M. Catalytic cracking of heavy fractions from the pyrolysis of waste HDPE and PP. Fuel 203, 244–252 (2017).

    Article 

    Google Scholar
     

  • Encinar, J. M. & González, J. F. Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process. Technol. 89, 678–686 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Arandes, J. M., Ereña, J., Azkoiti, M. J., López-Valerio, D. & Bilbao, J. Valorization by thermal cracking over silica of polyolefins dissolved in LCO. Fuel Process. Technol. 85, 125–140 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Dimitrov, N., Krehula, L. K., Siročić, A., & Hrnjak-Murgić, Z. Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polym. Degrad. Stab. 98, 972–979 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Yoshioka, T., Grause, G., Eger, C., Kaminsky, W. & Okuwaki, A. Pyrolysis of poly(ethylene terephthalate) in a fluidised bed plant. Polym. Degrad. Stab. 86, 499–504 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Jia, H., Ben, H., Luo, Y. & Wang, R. Catalytic fast pyrolysis of poly (ethylene terephthalate) (PET) with zeolite and nickel chloride. Polymers 12, 705 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Q. et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 605, 470–476 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, P. T. & Williams, E. Recycling plastic waste by pyrolysis. J. Energy Inst. 71, 81–93 (1998).

    CAS 

    Google Scholar
     

  • Huang, J. B., Zeng, G. S., Li, X. S., Cheng, X. C. & Tong, H. Theoretical studies on bond dissociation enthalpies for model compounds of typical plastic polymers. IOP Conf. Ser. Earth Environ. Sci. 167, 012029 (2018).

    Article 

    Google Scholar
     

  • John, P. C. S., Guan, Y., Kim, Y., Kim, S. & Paton, R. S. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nat. Commun. 11, 2328 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Marongiu, A., Faravelli, T. & Ranzi, E. Detailed kinetic modeling of the thermal degradation of vinyl polymers. J. Anal. Appl. Pyrolysis 78, 343–362 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Edn 59, 15402–15423 (2020).

  • van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article 

    Google Scholar
     

  • Chenoweth, K., van Duin, A. C. T. & Goddard, W. A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040–1053 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, T. B. Y. et al. Characterisation of pyrolysis kinetics and detailed gas species formations of engineering polymers via reactive molecular dynamics (ReaxFF). J. Anal. Appl. Pyrolysis 153, 104931 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lele, A., Kwon, H., Ganeshan, K., Xuan, Y. & Duin, A. C. T. V. ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel. Fuel 297, 120724 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gracida-Alvarez, U. R., Orcid, M. K. M., Sacramento-Rivero, J. C. & Shonnard, D. R. Effect of temperature and vapor residence time on the micropyrolysis products of waste high density polyethylene. Ind. Eng. Chem. Res. 57, 1912–1923 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, D., Wang, X., Miller, J. B. & Huber, G. W. The chemistry and kinetics of polyethylene pyrolysis: a process to produce fuels and chemicals. ChemSusChem 13, 1764–1774 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montaudo, G., Puglisi, C. & Samperi, F. Primary thermal degradation mechanisms of PET and PBT. Polym. Degrad. Stab. 42, 13–28 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wismann, S. T. et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364, 756–759 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, X. et al. Hydrothermal treatment of e-waste plastics for tertiary recycling: product slate and decomposition mechanisms. ACS Sustain. Chem. Eng. 7, 1464–1473 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Q. et al. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: analytical Py-GC/MS study. J. Anal. Appl. Pyrolysis 92, 430–438 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Aktulga, H. M., Fogarty, J. C., Pandit, S. A. & Grama, A. Y. Parallel reactive molecular dynamics: numerical methods and algorithmic techniques. Parallel Comput. 38, 245–259 (2012).

    Article 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kowalik, M. et al. Atomistic scale analysis of the carbonization process for C/H/O/N-based polymers with the ReaxFF reactive force field. J. Phys. Chem. B 123, 5357–5367 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, Q., Rajabpour, S., Kowalik, M. & van Duin, A. C. T. Predicting cost-effective carbon fiber precursors: unraveling the functionalities of oxygen and nitrogen-containing groups during carbonization from ReaxFF simulations. Carbon 159, 25–36 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rajabpour, S. et al. Low-temperature carbonization of polyacrylonitrile/graphene carbon fibers: a combined ReaxFF molecular dynamics and experimental study. Carbon 174, 345–356 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Converting PBO fibers into carbon fibers by ultrafast carbonization. Carbon 159, 432–442 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Johnston, H. S. & Parr, C. Activation energies from bond energies. I. Hydrogen transfer reactions. J. Am. Chem. Soc. 85, 2544–2551 (1963).

    Article 
    CAS 

    Google Scholar
     

  • Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput. Mater. 2, 15011 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Kwon, H. et al. ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels. Fuel 279, 118548 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Source link