May 5, 2024
Quantum critical dynamics in a 5,000-qubit programmable spin glass – Nature

Quantum critical dynamics in a 5,000-qubit programmable spin glass – Nature

  • Brooke, J., Bitko, D., Rosenbaum, T. F. & Aeppli, G. Quantum annealing of a disordered magnet. Science 284, 779–781 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aeppli, G. & Rosenbaum, T. F. in Quantum Annealing and Related Optimization Methods (eds Das, A. & Chakrabarti, B.) Ch. 6 (Springer, 2005).

  • Das, A. & Chakrabarti, B. K. Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061–1081 (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Santoro, G. E., Martonák, R., Tosatti, E. & Car, R. Theory of quantum annealing of an Ising spin glass. Science 295, 2427–2430 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, R. et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010).

    Article 

    Google Scholar
     

  • Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Katzgraber, H. G., Hamze, F. & Andrist, R. S. Glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines. Phys. Rev. X 4, 021008 (2014).


    Google Scholar
     

  • Hen, I. et al. Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 042325 (2015).

    Article 

    Google Scholar
     

  • Heim, B., Rønnow, T. F., Isakov, S. V. & Troyer, M. Quantum versus classical annealing of Ising spin glasses. Science 348, 215–217 (2015).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Boixo, S. et al. Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 7, 10327 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denchev, V. S. et al. What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016).


    Google Scholar
     

  • Albash, T. & Lidar, D. A. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8, 031016 (2018).

    CAS 

    Google Scholar
     

  • Mezard M. & Montanari, A. Information, Physics, and Computation (Oxford Univ. Press, 2009).

  • Stein, D. L. & Newman, C. M. Spin Glasses and Complexity (Princeton Univ. Press, 2013).

  • Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tan, C. M. (ed.) Simulated Annealing (InTech, 2008).

  • Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Arnab Das, A. & Chakrabarti, B. (eds) Quantum Annealing and Related Optimization Methods (Springer, 2005).

  • Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article 
    MathSciNet 

    Google Scholar
     

  • Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lechner, W., Hauke, P. & Zoller, P. A quantum annealing architecture with all-to-all connectivity from local interactions. Sci. Adv. 1, e15008 (2015).

    Article 

    Google Scholar
     

  • Weber, S. J. et al. Coherent coupled qubits for quantum annealing. Phys. Rev. Appl. 8, 014004 (2017).

    Article 

    Google Scholar
     

  • Novikov, S. et al. Exploring more-coherent quantum annealing. In 2018 IEEE International Conference on Rebooting Computing (ICRC) 1–7 (IEEE, 2018).

  • Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholl, P. et al. Programmable quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2020).

    Article 

    Google Scholar
     

  • Ebadi, S. et al. Quantum optimization of maximum independent set using Rydberg atom arrays. Science 376, 1209–1215 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, R. et al. Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • King, A. D. et al. Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nat. Phys. 18, 1324–1328 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Suzuki, M. Relationship between d-dimensional quantal spin systems and (d + 1)-dimensional Ising systems: equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Prog. Theor. Phys. 56, 1454–1469 (1976).

    Article 
    MATH 

    Google Scholar
     

  • Isakov, S. V. et al. Understanding quantum tunneling through quantum Monte Carlo simulations. Phys. Rev. Lett. 117, 180402 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • King, A. D. et al. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560, 456–460 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura, K., Nishimori, H. & Katzgraber, H. G. Griffiths–McCoy singularity on the diluted chimera graph: Monte Carlo simulations and experiments on quantum hardware. Phys. Rev. A 102, 042403 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Weinberg, P. et al. Scaling and diabatic effects in quantum annealing with a D-Wave device. Phys. Rev. Lett. 124, 090502 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, S., Green, D., Dahl, E. D. & Chamon, C. Experimental realization of classical ({rho }_{E}^{{rm{f}}}) spin liquids in a programmable quantum device. Phys. Rev. B 104, L081107 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A Math. Gen. 9, 1387–1398 (1976).

    Article 
    MATH 

    Google Scholar
     

  • Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Polkovnikov, A. Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201 (2005).

    Article 

    Google Scholar
     

  • Dziarmaga, J. Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, S., Ortiz, G. & Viola, L. Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions. Europhys. Lett. 84, 67008 (2008).

    Article 

    Google Scholar
     

  • De Grandi, C., Polkovnikov, A. & Sandvik, A. W. Universal nonequilibrium quantum dynamics in imaginary time. Phys. Rev. B 84, 224303 (2011).

    Article 

    Google Scholar
     

  • Chandran, A., Erez, A., Gubser, S. S. & Sondhi, S. L. Kibble–Zurek problem: universality and the scaling limit. Phys. Rev. B 86, 064304 (2012).

    Article 

    Google Scholar
     

  • Liu, C.-W., Polkovnikov, A., Sandvik, A. W. & Young, A. P. Universal dynamic scaling in three-dimensional Ising spin glasses. Phys. Rev. E 92, 022128 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Miyazaki, R. & Nishimori, H. Real-space renormalization-group approach to the random transverse-field Ising model in finite dimensions. Phys. Rev. E 87, 032154(2013).

    Article 

    Google Scholar
     

  • Matoz-Fernandez, D. A. & Romá, F. Unconventional critical activated scaling of two-dimensional quantum spin glasses. Phys. Rev. B 94, 024201 (2016).

    Article 

    Google Scholar
     

  • Guo, M., Bhatt, R. N. & Huse, D. A. Quantum critical behavior of a three-dimensional Ising spin glass in a transverse magnetic field. Phys. Rev. Lett. 72, 4137–4140 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartmann, A. K. Ground-state behavior of the three -dimensional ±J random-bond Ising model. Phys. Rev. B 59, 3617–3623 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Hasenbusch, M., Toldin, F. P., Pelissetto, A. & Vicari, E. Critical behavior of the three-dimensional ±J Ising model at the paramagnetic-ferromagnetic transition line. Phys. Rev. B 76, 094402 (2007).

    Article 

    Google Scholar
     

  • Hasenbusch, M., Toldin, F. P., Pelissetto, A. & Vicari, E. Magnetic-glassy multicritical behavior of the three-dimensional ±J Ising model. Phys. Rev. B 76, 184202 (2007).

    Article 

    Google Scholar
     

  • Nishimori, H. Boundary between the ferromagnetic and spin glass phases. J. Phys. Soc. Jpn 61, 1011–1012 (1992).

    Article 
    MathSciNet 

    Google Scholar
     

  • Schmitt, M., Rams, M. M., Dziarmaga, J., Heyl, M. & Zurek, W. H. Quantum phase transition dynamics in the two-dimensional transverse-field Ising model. Sci. Adv. 8, eabl6850 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, R. et al. Experimental demonstration of a robust and scalable flux qubit. Phys. Rev. B 81, 134510 (2010).

    Article 

    Google Scholar
     

  • Source link