May 7, 2024
Determining the gluonic gravitational form factors of the proton – Nature

Determining the gluonic gravitational form factors of the proton – Nature

  • National Academies of Sciences, Engineering, and Medicine. An Assessment of U.S.-Based Electron-Ion Collider Science (The National Academies Press, 2018).

  • Particle Data Group. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

    Article 

    Google Scholar
     

  • Shifman, M. A., Vainshtein, A. I. & Zakharov, V. I. QCD and resonance physics. Theoretical foundations. Nucl. Phys. B 147, 385–447 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Shifman, M. A., Vainshtein, A. I. & Zakharov, V. I. QCD and resonance physics. Applications. Nucl. Phys. B 147, 448–518 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Shifman, M. A., Vainshtein, A. I. & Zakharov, V. I. Remarks on Higgs-boson interactions with nucleons. Phys. Lett. B 78, 443–446 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Xiong, W. et al. A small proton charge radius from an electron–proton scattering experiment. Nature 575, 147–150 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pagels, H. Energy-momentum structure form factors of particles. Phys. Rev. 144, 1250–1260 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Teryaev, O. V. Gravitational form factors and nucleon spin structure. Front. Phys. 11, 111207 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kharzeev, D. E. Mass radius of the proton. Phys. Rev. D 104, 054015 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Guo, Y., Ji, X. & Liu, Y. QCD analysis of near-threshold photon-proton production of heavy quarkonium. Phys. Rev. D 103, 096010 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mamo, K. A. & Zahed, I. Diffractive photoproduction of J/ψ and ϒ using holographic QCD: gravitational form factors and GPD of gluons in the proton. Phys. Rev. D 101, 086003 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pefkou, D. A., Hackett, D. C. & Shanahan, P. E. Gluon gravitational structure of hadrons of different spin. Phys. Rev. D 105, 054509 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wilson, K. G. Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dürr, S. et al. Ab initio determination of light hadron masses. Science 322, 1224–1227 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Borsanyi, S. et al. Ab initio calculation of the neutron-proton mass difference. Science 347, 1452–1455 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatta, Y. & Yang, D.-L. Holographic J/ψ production near threshold and the proton mass problem. Phys. Rev. D 98, 074003 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hatta, Y., Rajan, A. & Tanaka, K. Quark and gluon contributions to the QCD trace anomaly. J. High Energy Phys. 12, 8 (2018).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Hatta, Y., Rajan, A. & Yang, D.-L. Near threshold J/ψ and ϒ photoproduction at JLab and RHIC. Phys. Rev. D 100, 014032 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mamo, K. A. & Zahed, I. J/ψ near threshold in holographic QCD: A and D gravitational form factors. Phys. Rev. D 106, 086004 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ji, X., Liu, Y. & Zahed, I. Mass structure of hadrons and light-front sum rules in the ’t Hooft model. Phys. Rev. D 103, 074002 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Sun, P., Tong, X.-B. & Yuan, F. Perturbative QCD analysis of near threshold heavy quarkonium photoproduction at large momentum transfer. Phys. Lett. B 822, 136655 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Ji, X. Proton mass decomposition: naturalness and interpretations. Front. Phys. 16, 64601 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ji, X. & Liu, Y. Quantum anomalous energy effects on the nucleon mass. Sci. China Phys. Mech. Astron. 64, 281012 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lorcé, C., Metz, A., Pasquini, B. & Rodini, S. Energy-momentum tensor in QCD: nucleon mass decomposition and mechanical equilibrium. J. High Energy Phys. 2021, 121 (2021).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Duran, B. The J/ψ-007 Experiment: A Search for the LHCb Charm Pentaquarks in Hall C at Jefferson Lab. PhD thesis, Temple Univ. (2021).

  • Ali, A. et al. First measurement of near-threshold J/ψ exclusive photoproduction off the proton. Phys. Rev. Lett. 123, 072001 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mamo, K. A. & Zahed, I. Nucleon mass radii and distribution: holographic QCD, lattice QCD and GlueX data. Phys. Rev. D 103, 094010 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, T.-J. et al. New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D 103, 014013 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alexandrou, C. et al. Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass. Phys. Rev. D 101, 094513 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Yang, Y.-B. et al. Proton mass decomposition from the QCD energy momentum tensor. Phys. Rev. Lett. 121, 212001 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanahan, P. E. & Detmold, W. Gluon gravitational form factors of the nucleon and the pion from lattice QCD. Phys. Rev. D 99, 014511 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, R., Chen, X. & Evslin, J. The origin of proton mass from J/Ψ photo-production data. Eur. Phys. J. C 80, 507 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kharzeev, D. Quarkonium interactions in QCD. Proc. Int. Sch. Phys. Fermi 130, 105–131 (1996).


    Google Scholar
     

  • Kharzeev, D., Satz, H., Syamtomov, A. & Zinovjev, G. J/ψ photo-production and the gluon structure of the nucleon. Eur. Phys. J. C 9, 459–462 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bosted, P. E. & Christy, M. E. Empirical fit to inelastic electron-deuteron and electron-neutron resonance region transverse cross sections. Phys. Rev. C 77, 065206 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Gryniuk, O., Joosten, S., Meziani, Z.-E. & Vanderhaeghen, M. ϒ photoproduction on the proton at the electron-ion collider. Phys. Rev. D 102, 014016 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • D’Agostini, G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res. A 362, 487–498 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Pauk, V. & Vanderhaeghen, M. Lepton universality test in the photoproduction of ee+ versus μμ+ pairs on a proton target. Phys. Rev. Lett. 115, 221804 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mathieu, V. et al. Vector meson photoproduction with a linearly polarized beam. Phys. Rev. D 97, 094003 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ji, X. QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74, 1071–1074 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, F., Sun, P. & Yang, Y.-B. Demonstration of the hadron mass origin from the QCD trace anomaly. Phys. Rev. D 104, 074507 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Source link