May 4, 2024
Tracking cubic ice at molecular resolution – Nature

Tracking cubic ice at molecular resolution – Nature

  • Bartels-Rausch, T. Ten things we need to know about ice and snow. Nature 494, 27–29 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • König, H. Eine kubische Eismodifikation. Z. Kristallogr. Cryst. Mater. 105, 279–286 (1943).

    Article 

    Google Scholar
     

  • Whalley, E. Scheiner’s halo: evidence for ice Ic in the atmosphere. Science 211, 389–390 (1981).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhs, W., Bliss, D. & Finney, J. High-resolution neutron powder diffraction study of ice Ic. J. Phys. Colloq. 48, C1-631–C1-636 (1987).

    Article 

    Google Scholar
     

  • Mayer, E. & Hallbrucker, A. Cubic ice from liquid water. Nature 325, 601–602 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murray, B. J., Knopf, D. A. & Bertram, A. K. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature 434, 202–205 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, E. B. & Molinero, V. Is it cubic? Ice crystallization from deeply supercooled water. Phys. Chem. Chem. Phys. 13, 20008–20016 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhs, W. F., Sippel, C., Falenty, A. & Hansen, T. C. Extent and relevance of stacking disorder in “ice Ic”. Proc. Natl Acad. Sci. USA 109, 21259–21264 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupi, L. et al. Role of stacking disorder in ice nucleation. Nature 551, 218–222 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMillan, J. A. & Los, S. C. Vitreous ice: irreversible transformations during warm-up. Nature 206, 806–807 (1965).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morishige, K. & Uematsu, H. The proper structure of cubic ice confined in mesopores. J. Chem. Phys. 122, 044711 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Arnold, G. P., Finch, E. D., Rabideau, S. W. & Wenzel, R. G. Neutron‐diffraction study of ice polymorphs. III. Ice Ic. J. Chem. Phys. 49, 4365–4369 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bertie, J. E., Calvert, L. D. & Whalley, E. Transformations of ice II, ice III, and ice V at atmospheric pressure. J. Chem. Phys. 38, 840–846 (1963).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kuhs, W. F., Genov, G., Staykova, D. K. & Hansen, T. Ice perfection and onset of anomalous preservation of gas hydrates. Phys. Chem. Chem. Phys. 6, 4917–4920 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Falenty, A. & Kuhs, W. F. “Self-preservation” of CO2 gas hydrates—surface microstructure and ice perfection. J. Phys. Chem. B 113, 15975–15988 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghosh, J., Bhuin, R. G., Vishwakarma, G. & Pradeep, T. Formation of cubic ice via clathrate hydrate, prepared in ultrahigh vacuum under cryogenic conditions. J. Phys. Chem. Lett. 11, 26–32 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • del Rosso, L. et al. Cubic ice Ic without stacking defects obtained from ice XVII. Nat. Mater. 19, 663–668 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Komatsu, K. et al. Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate. Nat. Commun. 11, 464 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, R. et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 577, 60–63 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, K., Koshino, M. & Suenaga, K. Atomically resolved images of Ih ice single crystals in the solid phase. Phys. Rev. Lett. 106, 206101 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mishima, O., Calvert, L. D. & Whalley, E. ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, D., Wan, Q. & Galli, G. The refractive index and electronic gap of water and ice increase with increasing pressure. Nat. Commun. 5, 3919 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tajima, Y., Matsuo, T. & Suga, H. Phase transition in KOH-doped hexagonal ice. Nature 299, 810–812 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kobayashi, K. & Yasuda, H. Phase transition of ice Ic to ice XI under electron beam irradiation. Chem. Phys. Lett. 547, 9–12 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Małolepsza, E. & Keyes, T. Water freezing and ice melting. J. Chem. Theory Comput. 11, 5613–5623 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Steytler, D. C., Dore, J. C. & Wright, C. J. Neutron diffraction study of cubic ice nucleation in a porous silica network. J. Phys. Chem. 87, 2458–2459 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Davies, M. B., Fitzner, M. & Michaelides, A. Routes to cubic ice through heterogeneous nucleation. Proc. Natl Acad. Sci. USA 118, e2025245118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, L. et al. Visualizing anisotropic oxygen diffusion in ceria under activated conditions. Phys. Rev. Lett. 124, 056002 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heide, H.-G. Observations on ice layers. Ultramicroscopy 14, 271–278 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Microscopic kinetics pathway of salt crystallization in graphene nanocapillaries. Phys. Rev. Lett. 126, 136001 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Synthesis of honeycomb-structured beryllium oxide via graphene liquid cells. Angew. Chem. Int. Ed. 59, 15734–15740 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density along Dislocations. PhD thesis, Arizona State Univ. (2002).

  • Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113, 4008–4016 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, E. B. & Molinero, V. Ice crystallization in water’s “no-man’s land”. J. Chem. Phys. 132, 244504 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Source link