May 4, 2024
Electrolyte design for Li-ion batteries under extreme operating conditions – Nature

Electrolyte design for Li-ion batteries under extreme operating conditions – Nature

  • Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    CAS 

    Google Scholar
     

  • Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    CAS 

    Google Scholar
     

  • Liu, Y., Zhu, Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    ADS 

    Google Scholar
     

  • Rodrigues, M.-T. F. et al. A materials perspective on Li-ion batteries at extreme temperatures. Nat. Energy 2, 17108 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    CAS 

    Google Scholar
     

  • Smart, M. et al. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J. Power Sources 119, 349–358 (2003).

    ADS 

    Google Scholar
     

  • Herreyre, S. et al. New Li-ion electrolytes for low temperature applications. J. Power Sources 97, 576–580 (2001).

    ADS 

    Google Scholar
     

  • Dong, X., Guo, Z., Guo, Z., Wang, Y. & Xia, Y. Organic batteries operated at −70 °C. Joule 2, 902–913 (2018).

    CAS 

    Google Scholar
     

  • Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017).


    Google Scholar
     

  • Holoubek, J. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, S., Xu, K. & Jow, T. A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Commun. 4, 928–932 (2002).

    CAS 

    Google Scholar
     

  • Huang, C. K., Sakamoto, J., Wolfenstine, J. & Surampudi, S. The limits of low-temperature performance of Li-ion cells. J. Electrochem. Soc. 147, 2893 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, S., Xu, K. & Jow, T. Low temperature performance of graphite electrode in Li-ion cells. Electrochim. Acta 48, 241–246 (2002).

    CAS 

    Google Scholar
     

  • Petzl, M., Kasper, M. & Danzer, M. A. Lithium plating in a commercial lithium-ion battery—a low-temperature aging study. J. Power Sources 275, 799–807 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Cai, W. et al. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew. Chem. Int. Ed. 133, 13117–13122 (2021).

    ADS 

    Google Scholar
     

  • Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).

    CAS 

    Google Scholar
     

  • Burke, C. M., Pande, V., Khetan, A., Viswanathan, V. & McCloskey, B. D. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proc. Natl Acad. Sci. USA 112, 9293–9298 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Holoubek, J. et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 5, 1438–1447 (2020).

    CAS 

    Google Scholar
     

  • Ihara, M. et al. Properties of carbon anodes and thermal stability in LiPF6/methyl difluoroacetate electrolyte. J. Electrochem. Soc. 150, A1476 (2003).

    CAS 

    Google Scholar
     

  • Cho, Y.-G. et al. Enabling the low-temperature cycling of NMC||graphite pouch cells with an ester-based electrolyte. ACS Energy Lett. 6, 2016–2023 (2021).

    CAS 

    Google Scholar
     

  • Henderson, W. A. Glyme−lithium salt phase behavior. J. Phys. Chem. B 110, 13177–13183 (2006).

    CAS 

    Google Scholar
     

  • Chu, H. et al. Achieving three-dimensional lithium sulfide growth in lithium–sulfur batteries using high-donor-number anions. Nat. Commun. 10, 188 (2019).

    ADS 

    Google Scholar
     

  • Linert, W., Camard, A., Armand, M. & Michot, C. Anions of low Lewis basicity for ionic solid state electrolytes. Coord. Chem. Rev. 226, 137–141 (2002).

    CAS 

    Google Scholar
     

  • Li, Y., Lu, Y., Adelhelm, P., Titirici, M.-M. & Hu, Y.-S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687 (2019).

    CAS 

    Google Scholar
     

  • Xue, W. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 13, 212–220 (2020).

    CAS 

    Google Scholar
     

  • Seo, D. M., Borodin, O., Han, S.-D., Boyle, P. D. & Henderson, W. A. Electrolyte solvation and ionic association II. Acetonitrile-lithium salt mixtures: highly dissociated salts. J. Electrochem. Soc. 159, A1489 (2012).

    CAS 

    Google Scholar
     

  • Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Bogle, X., Vazquez, R., Greenbaum, S., Cresce, A. V. W. & Xu, K. Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J. Phys. Chem. Lett. 4, 1664–1668 (2013).

    CAS 

    Google Scholar
     

  • Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).


    Google Scholar
     

  • Ren, X. et al. Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl Acad. Sci. USA 117, 28603–28613 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range. Adv. Energy Mater. 10, 2000368 (2020).

    CAS 

    Google Scholar
     

  • Yamaki, J.-I. et al. Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells. J. Power Sources 102, 288–293 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Beltrop, K. et al. Enabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries. J. Power Sources 373, 193–202 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Waldmann, T. et al. Interplay of operational parameters on lithium deposition in lithium-ion cells: systematic measurements with reconstructed 3-electrode pouch full cells. J. Electrochem. Soc. 163, A1232 (2016).

    CAS 

    Google Scholar
     

  • Hammersley, A., Svensson, S., Hanfland, M., Fitch, A. & Hausermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res. 14, 235–248 (1996).

    ADS 

    Google Scholar
     

  • Qiu, X., Thompson, J. W. & Billinge, S. J. PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystallogr. 37, 678 (2004).

    CAS 

    Google Scholar
     

  • Borodin, O. et al. Insights into the structure and transport of the lithium, sodium, magnesium, and zinc bis(trifluoromethansulfonyl)imide salts in ionic liquids. J. Phys. Chem. C 122, 20108–20121 (2018).

    CAS 

    Google Scholar
     

  • Glaser, R., Borodin, O., Johnson, B. R., Jhulki, S. & Yushin, G. Minimizing long-chain polysulfide formation in Li–S batteries by using localized low concentration highly fluorinated electrolytes. J. Electrochem. Soc. 168, 090543 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Borodin, O. & Smith, G. D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. J. Phys. Chem. B 113, 1763–1776 (2009).

    CAS 

    Google Scholar
     

  • Gaussian 16 Rev. C.01 (Gaussian Inc., Wallingford, CT, 2016).

  • Borodin, O. in Electrolytes for Lithium and Lithium-Ion Batteries: Modern Aspects of Electrochemistry Vol. 58 (eds Richard, T. et al.) 371–401 (Springer, 2014).

  • Jürgen, H. Ab-initio simulations of materials using VASP: density‐functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).


    Google Scholar
     

  • Dixit, M. et al. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. Phys. Chem. Chem. Phys. 18, 6799–6812 (2016).

    CAS 

    Google Scholar
     

  • Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    ADS 

    Google Scholar
     

  • Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).


    Google Scholar
     

  • Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    CAS 

    Google Scholar
     

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS 

    Google Scholar
     

  • Source link