May 3, 2024
Water splitting with silicon p–i–n superlattices suspended in solution – Nature

Water splitting with silicon p–i–n superlattices suspended in solution – Nature

  • Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article 
    CAS 

    Google Scholar
     

  • Pinaud, B. A. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energ. Environ. Sci. 6, 1983–2002 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fabian, D. M. et al. Particle suspension reactors and materials for solar-driven water splitting. Energ. Environ. Sci. 8, 2825–2850 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. & Domen, K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Duonghong, D., Borgarello, E. & Graetzel, M. Dynamics of light-induced water cleavage in colloidal systems. J. Am. Chem. Soc. 103, 4685–4690 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Highly efficient overall water splitting through optimization of preparation and operation conditions of layered perovskite photocatalysts. Top. Catal. 35, 295–303 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kato, H., Asakura, K. & Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. G., Hwang, D. W., Kim, J., Kim, Y. G. & Lee, J. S. Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem. Commun. 12, 1077–1078 (1999).

  • Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 18, 827–832 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Luo, L. & Maggard, P. A. Effect of ligand coordination on the structures and visible-light photocatalytic activity of manganese vanadate hybrids. Cryst. Grow. Des. 13, 5282–5288 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Sci. 334, 645–648 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kempa, T. J. et al. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano. Lett. 8, 3456–3460 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Mohite, A. D. et al. Highly efficient charge separation and collection across in situ doped axial VLS-grown Si nanowire p–n junctions. Nano. Lett. 12, 1965–1971 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jung, Y., Vacic, A., Perea, D. E., Picraux, S. T. & Reed, M. A. Minority carrier lifetimes and surface effects in VLS-grown axial p–n junction silicon nanowires. Adv. Mater. 23, 4306–4311 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gabriel, M. M. et al. Imaging charge separation and carrier recombination in nanowire p-i-n junctions using ultrafast microscopy. Nano. Lett. 14, 3079–3087 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hill, D. J., Teitsworth, T. S., Ritchie, E. T., Atkin, J. M. & Cahoon, J. F. Interplay of surface recombination and diode geometry for the performance of axial p–i–n nanowire solar cells. ACS Nano. 12, 10554–10563 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cordoba, C., Teitsworth, T. S., Yang, M., Cahoon, J. F. & Kavanagh, K. Abrupt degenerately-doped silicon nanowire tunnel junctions. Nanotechnol. 31, 415708 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hill, D. J., Teitsworth, T. S., Kim, S., Christesen, J. D. & Cahoon, J. F. Encoding highly nonequilibrium boron concentrations and abrupt morphology in p-type/n-type silicon nanowire superlattices. ACS Appl. Mater. Interfaces 9, 37105–37111 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ritchie, E. T. et al. Mapping free-carriers in multijunction silicon nanowires using infrared near-field optical microscopy. Nano Lett. 17, 6591–6597 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Su, Y. et al. Single-nanowire photoelectrochemistry. Nat. Nanotechnol. 11, 609–612 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. & Cahoon, J. F. Geometric nanophotonics: light management in single nanowires through morphology. Acc. Chem. Res. 52, 3511–3520 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Holmberg, V. C., Bogart, T. D., Chockla, A. M., Hessel, C. M. & Korgel, B. A. Optical properties of silicon and germanium nanowire fabric. J. Phys. Chem. C 116, 22486–22491 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gerken, J. B. et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Christesen, J. D. et al. Design principles for photovoltaic devices based on Si nanowires with axial or radial p–n junctions. Nano Lett. 12, 6024–6029 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mujica, M. et al. The geode process: hollow silica microcapsules as a high surface area substrate for semiconductor nanowire growth. ACS Appl. Nano Mater. 3, 905–913 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Royea, W. J., Juang, A. & Lewis, N. S. Preparation of air-stable, low recombination velocity Si(111) surfaces through alkyl termination. Appl. Phys. Lett. 77, 1988–1990 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Bansal, A. & Lewis, N. S. Stabilization of Si photoanodes in aqueous electrolytes through surface alkylation. J. Phys. Chem. B 102, 4058–4060 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Bywalez, R., Karacuban, H., Nienhaus, H., Schulz, C. & Wiggers, H. Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid. Nanoscale Res. Lett. 7, 76 (2012).

    Article 

    Google Scholar
     

  • Luttmer, J. D. & Trachtenberg, I. Performance predictions for solar‐chemical converters based on photoelectrochemical I‐V curves. J. Electrochem. Soc. 132, 1312–1315 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Mangolini, L., Thimsen, E. & Kortshagen, U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655–659 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Heath, J. R. A liquid-solution-phase synthesis of crystalline silicon. Science 258, 1131–1133 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Vargas-Estevez, C. et al. Suspended silicon microphotodiodes for electrochemical and biological applications. Small 13, 1701920 (2017).

    Article 

    Google Scholar
     

  • Ohiri, U. et al. Reconfigurable engineered motile semiconductor microparticles. Nat. Commun. 9, 1791 (2018).

    Article 

    Google Scholar
     

  • Heinrich, J. L., Curtis, C. L., Credo, G. M., Sailor, M. J. & Kavanagh, K. L. Luminescent colloidal silicon suspensions from porous silicon. Sci. 255, 66–68 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Christesen, J. D., Pinion, C. W., Zhang, X., McBride, J. R. & Cahoon, J. F. Encoding abrupt and uniform dopant profiles in vapor–liquid–solid nanowires by suppressing the reservoir effect of the liquid catalyst. ACS Nano 8, 11790–11798 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. et al. Designing morphology in epitaxial silicon nanowires: the role of gold, surface chemistry, and phosphorus doping. ACS Nano 11, 4453–4462 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley-Interscience, 2007).

  • Taubner, T., Hillenbrand, R. & Keilmann, F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. J. Microsc. 210, 311–314 (2003).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Source link