April 26, 2024
Electronic metadevices for terahertz applications – Nature

Electronic metadevices for terahertz applications – Nature

  • del Alamo, J. A. Nanometre-scale electronics with III–V compound semiconductors. Nature 479, 317–323 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chau, R., Doyle, B., Datta, S., Kavalieros, J. & Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 6, 810–812 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sengupta, K., Nagatsuma, T. & Mittleman, D. M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 1, 622–635 (2018).

    Article 

    Google Scholar
     

  • Samizadeh Nikoo, M. et al. Nanoplasma-enabled picosecond switches for ultrafast electronics. Nature 579, 534–539 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehdi, I., Siles, J. V., Lee, C. & Schlecht, E. THz diode technology: status, prospects, and applications. Proc. IEEE 105, 990–1007 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 95, 016623 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Samizadeh Nikoo, M. et al. Beyond 8 THz displacement-field nano-switches for 5G and 6G communications. In 2021 IEEE International Electron Devices Meeting (IEDM) 4.5.1– 4.5.4 (IEEE, 2021).

  • Guo, J. et al. MBE-regrown ohmics in InAlN HEMTs with a regrowth interface resistance of 0.05 Ω mm. IEEE Electron Device Lett. 33, 525–527 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dasgupta, S. et al. Ultralow nonalloyed ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth. Appl. Phys. Lett. 96, 143504 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Tang, Y. et al. Ultrahigh-speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz. IEEE Electron Device Lett. 36, 549–551 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siles, J. V. & Grajal, J. Physics-based design and optimization of Schottky diode frequency multipliers for terahertz applications. IEEE Trans. Microw. Theory Tech. 58, 1933–1942 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Dang, S., Amin, O., Shihada, B. & Alouini, M.-S. What should 6G be? Nat. Electron. 3, 20–29 (2020).

    Article 

    Google Scholar
     

  • Grant, P. D., Denhoff, M. W. & Mansour, R. R. A Comparison between RF MEMS switches and semiconductor switches. In 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04) 515–521 (IEEE, 2004).

  • Madan, H. et al. 26.5 Terahertz electrically triggered RF switch on epitaxial VO2-on-sapphire (VOS) wafer. In 2015 IEEE International Electron Devices Meeting (IEDM) 9.3.1–9.3.4 (IEEE, 2015).

  • Kim, M. et al. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 9, 2524 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. et al. Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems. Nat. Electron. 3, 479–485 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cocker, T. L., Jelic, V., Hillenbrand, R. & Hegmann, F. A. Nanoscale terahertz scanning probe microscopy. Nat. Photon. 15, 558–569 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baker, C. et al. Detection of concealed explosives at a distance using terahertz technology. Proc. IEEE 95, 1559–1565 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438–2446 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Klein, P. B., Freitas, J. A. Jr, Binari, S. C. & Wickenden, A. E. Observation of deep traps responsible for current collapse in GaN metal-semiconductor field-effect transistors. Appl. Phys. Lett. 75, 4016–4018 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prasad, A., Thorsell, M., Zirath, H. & Fager, C. Accurate modeling of GaN HEMT RF behavior using an effective trapping potential. Trans. Microw. Theory Tech. 66, 845–857 (2018).

    Article 

    Google Scholar
     

  • Romanczyk, B. et al. N-Polar GaN-on-sapphire deep recess HEMTs with high W-band power density. IEEE Electron Device Lett. 41, 1633–1636 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Makioka, S., Anda, Y., Miyatsuji, K. & Ueda, D. Super self-aligned GaAs RF switch IC with 0.25 dB extremely low insertion loss for mobile communication systems. IEEE Trans. Electron Devices 48, 1510–1514 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Kelly, D., Brindle, C., Kemerling, C. & Stuber, M. The state-of the-art of silicon-on-sapphire CMOS RF switches. In IEEE Compound Semiconductor Integrated Circuit Symposium (CSIC ‘05) 200–202 (IEEE, 2005).

  • Campbell, C. & Dumka, D. Wideband high power GaN on SiC SPDT switch MMICs. In 2010 IEEE MTT-S International Microwave Symposium 145–148 (IEEE, 2010).

  • Zheng, X. et al. N-polar GaN MISHEMTs on sapphire with a proposed figure of merit fmax·VDS,Q of 9.5 THz.V. In 75th Annual Device Research Conference 1–2 (IEEE, 2017).

  • Tsukahara, Y. et al. Millimeter-wave MMIC switches with pHEMT cells reduced parasitic inductance. In IEEE MTT-S International Microwave Symposium Digest 1295–1298 (IEEE, 2003).

  • Kamitsuna, H., Yamane, Y., Tokumitsu, M., Sugahara, H. & Muraguchi, M. Low-power InP-HEMT switch ICs integrating miniaturized 2 × 2 switches for 10-Gb/s systems. IEEE J. Solid-State Circuits 41, 452–460 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Xiao, Q., Samiotes, G., Galluccio, T. & Rizzi, B. A high performance DC–20 GHz SPDT switch in a low cost plastic QFN package. In 2009 European Microwave Integrated Circuits Conference (EuMIC) 320–323 (IEEE, 2009).

  • Sankaran, S. & O, K. K. Schottky diode with cutoff frequency of 400 GHz fabricated in 0.18 m CMOS. Electron. Lett. 41, 506–508 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sankaran, S. & O, K. K. Schottky barrier diodes for millimeter wave detection in a foundry CMOS process. IEEE Electron Devices Lett. 26, 492–494 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, Y., East, J. R. & Katehi, L. P. High-efficiency W-band GaAs monolithic frequency multipliers. IEEE Trans. Microw. Theory Tech. 52, 529–535 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Santoruvo, G., Samizadeh Nikoo, M. & Matioli, E. Broadband zero-bias RF field-effect rectifiers based on AlGaN/GaN nanowires. IEEE Microw. Wireless Compon. Lett. 30, 66–69 (2020).

    Article 

    Google Scholar
     

  • Pfeiffer, U. R., Mishra, C., Rassel, R. M., Pinkett, S. & Reynolds, S. K. Schottky barrier diode circuits in silicon for future millimeter-wave and terahertz applications. IEEE Trans. Microw. Theory Tech. 56, 364–371 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liang, S. et al. GaN planar Schottky barrier diode with cut-off frequency of 902 GHz. Electron. Lett. 52, 1408–1410 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kobayashi, K. W. et al. K-Band double balanced mixer using GaAs HBT THz Schottky diodes. In Proceedings of 1994 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium 1163–1166 (IEEE, 1994).

  • Mizojiri, S. et al. GaN Schottky barrier diode for sub-terahertz rectenna. In 2019 IEEE Wireless Power Transfer Conference (WPTC), 36–39 (IEEE, 2019).

  • Ma, J. et al. 1200 V Multi-channel power devices with 2.8 Ω.mm ON-resistance. In 2019 IEEE International Electron Devices Meeting (IEDM) 1–4 (IEEE, 2019).

  • Lee, D. et al. 300-GHz InAlN/GaN HEMTs with InGaN back barrier. IEEE Electron Device Lett. 32, 1525–1527 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yue, Y. et al. InAlN/AlN/GaN HEMTs with regrown ohmic contacts and fT of 370 GHz. IEEE Electron Device Lett. 33, 988–990 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Higashiwaki, M., Mimura, T. & Matsui, T. 30-nm-gate AlGaN/GaN heterostructure field-effect transistors with a current-gain cutoff frequency of 181 GHz. Jpn J. Appl. Phys. 45, L1 111–L1 113 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Medjdoub, F. et al. First demonstration of high-power GaN-on-silicon transistors at 40 GHz. IEEE Electron Device Lett. 33, 1168–1170 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lei, J., Wei, J., Tang, G. and Chen, J. K. Reverse-blocking AlGaN/GaN normally-off MIS-HEMT with double-recessed gated Schottky drain. In Proc. Int. Symp. Power Semiconductor Devices ICs (ISPSD), 13–17 (IEEE, 2018).

  • Maroldt, S. et al. Integrated-Schottky-diode GaN HFET for high-efficiency digital PA MMICs at 2 GHz. In European Microwave Integrated Circuits Conference (EuMIC) 636–639 (IEEE, 2010).

  • Bahat-Treidel, E., Lossy, R., Wurfl, J. & Trankle, G. AlGaN/GaN HEMT with integrated recessed Schottky-drain protection diode. IEEE Electron Device Lett. 30, 901–903 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hwang, J. H., Lee, K.-J., Hong, S.-M. & Jang, J.-H. Balanced MSM-2DEG varactors based on AlGaN/GaN heterostructure with cutoff frequency of 1.54 THz. IEEE Electron Device Lett. 38, 107–110 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hwang, J. H. et al. Self-aligned metal–semiconductor–metal varactors based on the AlGaN/GaN heterostructure. IEEE Electron Device Lett. 40, 1740–1743 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, H. F. et al. 102-GHz AlInN/GaN HEMTs on silicon with 2.5-W/mm output power at 10 GHz. IEEE Electron Device Lett. 30, 796–798 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Corrion, A. L. et al. Enhancement-mode AlN/GaN/AlGaN DHFET with 700-mS/mm gm and 112-GHz fT. IEEE Electron Device Lett. 31, 1116–1118 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Denninghoff, D., Lu, J., Ahmadi, E., Keller, S. & Mishra, U. K. N-polar GaN/InAlN/AlGaN MIS-HEMTs with 1.89 S/mm extrinsic transconductance, 4 A/mm drain current, 204 GHz fT and 405 GHz fmax. In 71st Device Research Conference 197–198 (IEEE, 2013).

  • Shinohara, K. et al. Electron velocity enhancement in laterally-scaled GaN DH-HEMTs with fT of 260 GHz. IEEE Electron Device Lett. 32, 1074–1077 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chabak, K. D. et al. Strained AlInN/GaN HEMTs on SiC with 2.1-A/mm output current and 104-GHz cutoff frequency. IEEE Electron Device Lett. 31, 561–563 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, R. et al. Quaternary barrier InAlGaN HEMTs with fT/fmax of 230/300 GHz. IEEE Electron Device Lett. 34, 378–380 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, D. S. et al. 317 GHz InAlGaN/GaN HEMTs with extremely low on-resistance. Phys. Status Solidi C 10, 827–830 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, R. et al. 220-GHz quaternary barrier InAlGaN/AlN/GaN HEMTs. IEEE Electron Device Lett. 32, 1215–1217 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dumka, D. C., Chou, T. M., Faili, F., Francis, D. & Ejeckam, F. AlGaN/GaN HEMTs on diamond substrate with over 7 W/mm output power density at 10 GHz. Electron. Lett. 49, 1298–1299 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marti, D., Tirelli, S., Alt, A. R., Roberts, J. & Bolognesi, C. R. 150 GHz cutoff frequencies and 2 W/mm output power at 40 GHz in a millimeter wave AlGaN/GaN HEMT technology on silicon. IEEE Electron Device Lett. 33, 1372–1374 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lecourt, F. et al. InAlN/GaN HEMTs on sapphire substrate with 2.9-W/mm output power density at 18 GHz. IEEE Electron Device Lett. 32, 1537–1539 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xie, G. et al. Breakdown-voltage-enhancement technique for RF-based AlGaN/GaN HEMTs with a source-connected air-bridge field plate. IEEE Electron Device Lett. 33, 670–672 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arulkumaran, S. et al. Low specific on-resistance AlGaN/AlN/GaN high electron mobility transistors on high resistivity silicon substrate. Electrochem. Solid-State Lett. 13, H169–H172 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, J. W. et al. 12 W/mm AlGaN-GaN HFETs on silicon substrates. IEEE Electron Device Lett. 25, 459–461 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fukuoka, Y. & Itoh, T. Slow-wave coplanar waveguide on periodically doped semiconductor substrate. IEEE Trans. Microwave Theory Tech. 31, 1013–1017 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Angelotti, A. M. et al. Experimental characterization of charge trapping dynamics in 100-nm AlN/GaN/AlGaN-on-Si HEMTs by wideband transient measurements. IEEE Trans. Electron Dev. 67, 3069–3074 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tirado, J. M., Sanchez-Rojas, J. L. & Izpura, J. I. Trapping effects in the transient response of AlGaN/GaN HEMT devices. IEEE Trans. Electron Dev. 54, 410–417 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, X. et al. Study of gate oxide traps in HfO2/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by use of AC transconductance method. Appl. Phys. Lett. 102, 103504 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Ikamas, K. et al. Sub-picosecond pulsed THz FET detector characterization in plasmonic detection regime based on autocorrelation technique. Semicond. Sci. Technol. 33, 124013 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Han, J., Ferry, D. & Newman, P. Ultra-submicrometer-gate AlGaAs/GaAs HEMT’s. IEEE Electron Device Lett. 11, 209–211 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Howell, R. S. et al. The super-lattice castellated field effect transistor (SLCFET): a novel high performance transistor topology ideal for RF switching. In 2014 IEEE International Electron Devices Meeting 11.5.1–11.5.4, (IEEE, 2014).

  • Hongtao, W., Xuebang, G., Hongjiang, W., Bihua, W. & Yanan, L. W-band GaAs PIN diode SPST switch MMIC. In 2012 International Conference on Computational Problem-Solving (ICCP) 93–95 (IEEE, 2012).

  • Kim, M. et al. Monolayer molybdenum disulfide switches for 6G communication systems. Nat. Electron. 5, 367–373 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sobolewski, J. & Yashchyshyn, Y. State of the art sub-terahertz switching solutions. IEEE Access 10, 12983–12999 (2022).

    Article 

    Google Scholar
     

  • Gerafentis, I. & Feresidis, A. Design of tunable millimetre-wave pass-band FSS unit-cell loaded with GaAs air-bridged Schottky diodes. In 2022 16th European Conference on Antennas and Propagation (EuCAP) 1–5 (IEEE, 2022).

  • Samizadeh Nikoo, M. et al. Electrical control of glass-like dynamics in vanadium dioxide for data storage and processing. Nat. Electron. 5, 596–603 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Czaplewski, D. A., Nordquist, C. D., Patrizi, G. A., Kraus, G. M. & Cowan, W. D. RF MEMS switches with RuO2–Au contacts cycled to 10B cycles. J. Microelectromech. Syst. 22, 655–661 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Krestinskaya, O., James, A. P. & Leon, C. O. Neuro-memristive circuits for edge computing: a review. IEEE Trans Neural Netw. Learn. Syst. 31, 4–23 (2020).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Vitale, W. A. et al. Steep slope VO2 switches for wide-band (DC-40 GHz) reconfigurable electronics. In 72nd Device Research Conference 29–30 (IEEE, 2014).

  • Alekseev, E. W-band InGaAs/InP PIN diode monolithic integrated switches. In GaAs IC Symposium Digest 253–256 (IEEE, 1995).

  • Wang, G., Romeo, M., Henderson, C. & Papapolymerou, J. Novel reliable RF capacitive MEMS switches with photodefinable metal-oxide dielectrics. J. Microelectromech. Syst. 16, 550–555 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Woods, W., Taha, M. M. A., Tran, S. J. D., Burger, J. & Teuscher, C. Memristor panic—a survey of different device models in crossbar architectures. In 2015 IEEE/ACM International Symposium on Nanoscale Architectures 106–111 (IEEE, 2015).

  • Source link