May 7, 2024
Enhanced interactions of interlayer excitons in free-standing heterobilayers – Nature

Enhanced interactions of interlayer excitons in free-standing heterobilayers – Nature

  • Shilo, Y. et al. Particle correlations and evidence for dark state condensation in a cold dipolar exciton fluid. Nat. Commun. 4, 2335 (2013).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum wells. Science 343, 55–57 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Astrakharchik, G., Boronat, J., Kurbakov, I. & Lozovik, Y. E. Quantum phase transition in a two-dimensional system of dipoles. Phys. Rev. Lett. 98, 060405 (2007).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bondarev, I. V. & Vladimirova, M. R. Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures. Phys. Rev. B 97, 165419 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Lee, R., Drummond, N. & Needs, R. Exciton–exciton interaction and biexciton formation in bilayer systems. Phys. Rev. B 79, 125308 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Fogler, M., Butov, L. & Novoselov, K. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2–WSe2 heterointerface. npj 2D Mater. Appl. 4, 8 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jin, C. et al. Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys. 15, 1140–1144 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Merkl, P. et al. Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater. 18, 691–696 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photon. 13, 131–136 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 14, 801–805 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X., Littlewood, P., Hybertsen, M. S. & Rice, T. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett. 74, 1633 (1995).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Schinner, G. et al. Confinement and interaction of single indirect excitons in a voltage-controlled trap formed inside double InGaAs quantum wells. Phys. Rev. Lett. 110, 127403 (2013).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ovesen, S. et al. Interlayer exciton dynamics in van der Waals heterostructures. Commun. Phys. 2, 23 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang, N. et al. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 18, 7651–7657 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104–1109 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Choi, J. et al. Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv. 6, eaba8866 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Alloing, M., Lemaitre, A. & Dubin, F. Quantum signature blurred by disorder in indirect exciton gases. Europhys. Lett. 93, 17007 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Diffusivity reveals three distinct phases of interlayer excitons in MoSe2/WSe2 heterobilayers. Phys. Rev. Lett. 126, 106804 (2021).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Optical generation of high carrier densities in 2D semiconductor heterobilayers. Sci. Adv. 5, eaax0145 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Phillips, R., Lovering, D., Denton, G. & Smith, G. Biexciton creation and recombination in a GaAs quantum well. Phys. Rev. B 45, 4308 (1992).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Birkedal, D., Singh, J., Lyssenko, V., Erland, J. & Hvam, J. M. Binding of quasi-two-dimensional biexcitons. Phys. Rev. Lett. 76, 672 (1996).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • You, Y. et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Shang, J. et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 9, 647–655 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Pei, J. et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 11, 7468–7475 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Haedler, A. T. et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523, 196–199 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Sharma, A. et al. Supertransport of excitons in atomically thin organic semiconductors at the 2D quantum limit. Light Sci. Appl. 9, 116 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Clark, K. A., Krueger, E. L. & Vanden Bout, D. A. Direct measurement of energy migration in supramolecular carbocyanine dye nanotubes. J. Phys. Chem. 5, 2274–2282 (2014).

    CAS 

    Google Scholar
     

  • Mikhnenko, O. V., Blom, P. W. & Nguyen, T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015).

    Article 

    Google Scholar
     

  • Du, P., Lin, X. & Zhang, X. Dielectric constants of PDMS nanocomposites by conducting polymer nanowires. In 16th IEEE International Solid-State Sensors, Actuators and Microsystems Conference 645–648 (IEEE, 2011).

  • Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Mater. Appl. 2, 1 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Source link