April 26, 2024
Essential elements of radical pair magnetosensitivity in Drosophila – Nature

Essential elements of radical pair magnetosensitivity in Drosophila – Nature

  • Wiltschko, W. & Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 191, 675–693 (2005).

    Article 
    MATH 

    Google Scholar
     

  • Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Fedele, G. et al. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 10, e1004804 (2014).

    Article 

    Google Scholar
     

  • Giachello, C. N. G., Scrutton, N. S., Jones, A. R. & Baines, R. A. Magnetic fields modulate blue-light-dependent regulation of neuronal firing by cryptochrome. J. Neurosci. 36, 10742–10749 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schwarze, S. et al. Weak broadband electromagnetic fields are more disruptive to magnetic compass orientation in a night-migratory songbird (Erithacus rubecula) than strong narrow-band fields. Front. Behav. Neurosci. 10, 55 (2016).

    Article 

    Google Scholar
     

  • Günther, A. et al. Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr. Biol. 28, 211–223 (2018).

    Article 

    Google Scholar
     

  • Antill, L. M. & Woodward, J. R. Flavin adenine dinucleotide photochemistry is magnetic field sensitive at physiological pH. J. Phys. Chem. Lett. 9, 2691–2696 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wan, G., Hayden, A. N., Iiams, S. E. & Merlin, C. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat. Commun. 12, 771 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kyriacou, C. P. & Rosato, E. Genetic analysis of cryptochrome in insect magnetosensitivity. Front. Physiol. 13, 1522 (2022).

    Article 

    Google Scholar
     

  • Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Ritz, T. et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 96, 3451–3457 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kao, Y. T. et al. Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. J. Am. Chem. Soc. 130, 7695–7701 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Immeln, D., Weigel, A., Kottke, T. & Pérez Lustres, J. L. Primary events in the blue light sensor plant cryptochrome: intraprotein electron and proton transfer revealed by femtosecond spectroscopy. J. Am. Chem. Soc. 134, 12536–12546 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Giovani, B., Byrdin, M., Ahmad, M. & Brettel, K. Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10, 489–490 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Rosato, E. et al. Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr. Biol. 11, 909–917 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Dissel, S. et al. A constitutively active cryptochrome in Drosophila melanogaster. Nat. Neurosci. 7, 834–840 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Peschel, N., Chen, K. F., Szabo, G. & Stanewsky, R. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr. Biol. 19, 241–247 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zoltowski, B. D. et al. Structure of full-length Drosophila cryptochrome. Nature 480, 396–399 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Levy, C. et al. Updated structure of Drosophila cryptochrome. Nature 495, 396–399 (2013).

    Article 

    Google Scholar
     

  • Ye, F. et al. An unexpected INAD PDZ tandem-mediated plcβ binding in Drosophila photo receptors. eLife 7, e41848 (2018).

    Article 

    Google Scholar
     

  • Mazzotta, G. M. et al. Calmodulin enhances cryptochrome binding to INAD in Drosophila photoreceptors. Front. Mol. Neurosci. 11, 280 (2018).

  • Müller, P., Brettel, K., Grama, L., Nyitrai, M. & Lukacs, A. Photochemistry of wild-type and N378D mutant E. coli DNA photolyase with oxidized FAD cofactor studied by transient absorption spectroscopy. ChemPhysChem 17, 1329–1340 (2016).

    Article 

    Google Scholar
     

  • Nohr, D. et al. Extended electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. Biophys. J. 111, 301–311 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lin, C., Top, D., Manahan, C. C., Young, M. W. & Crane, B. R. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction. Proc. Natl Acad. Sci. USA 115, 3822–3827 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gegear, R. J., Foley, L. E., Casselman, A. & Reppert, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Baik, L. S. et al. Distinct mechanisms of Drosophila CRYPTOCHROME-mediated light-evoked membrane depolarization and in vivo clock resetting. Proc. Natl Acad. Sci. USA 116, 23339–23344 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Biskup, T. et al. Variable electron transfer pathways in an amphibian cryptochrome tryptophan versus tyrosine-based radical pairs. J. Biol. Chem. 288, 9249–9260 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Solov’yov, I. A. & Schulten, K. Magnetoreception through cryptochrome may involve superoxide. Biophys. J. 96, 4804–4813 (2009).

    Article 

    Google Scholar
     

  • Wiltschko, R., Ahmad, M., Nießner, C., Gehring, D. & Wiltschko, W. Light-dependent magnetoreception in birds: the crucial step occurs in the dark. J. R. Soc. Interface 13, 20151010 (2016).

    Article 

    Google Scholar
     

  • Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Woodward, J. R. Radical pairs in solution. Progress in Reaction Kinetics and Mechanism 27, 165–207 (2002).

  • Foley, L. E., Gegear, R. J. & Reppert, S. M. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2, 356 (2011).

    Article 

    Google Scholar
     

  • Miura, T., Maeda, K. & Arai, T. Effect of Coulomb interaction on the dynamics of the radical pair in the system of flavin mononucleotide and hen egg-white lysozyme (HEWL) studied by a magnetic field effect. J. Phys. Chem. B 107, 6474–6478 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Czarna, A. et al. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell 153, 1394–1405 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Z., Olson, C. A. & Kallenbach, N. R. Cation-π interaction in model α-helical peptides. J. Am. Chem. Soc. 124, 3284–3291 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Ikeya, N. & Woodward, J. R. Cellular autofluorescence is magnetic field sensitive. Proc. Natl Acad. Sci. USA 118, e2018043118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Murakami, M., Maeda, K. & Arai, T. Structure and kinetics of the intermediate biradicals generated from intramolecular electron transfer reaction of FAD studied by an action spectrum of the magnetic field effect. Chem. Phys. Lett. 362, 123–129 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Henbest, K. B., Kukura, P., Rodgers, C. T., Hore, P. J. & Timmel, C. R. Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J. Am. Chem. Soc. 126, 8102–8103 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Kowalczyk, R. M., Schleicher, E., Bittl, R. & Weber, S. The photoinduced triplet of flavins and its protonation states. J. Am. Chem. Soc. 126, 11393–11399 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Timmel, C. R. et al. Magnetic field effects in flavoproteins and related systems. Interface Focus https://doi.org/10.1098/rsfs.2013.0037 (2013).

  • Hemsley, M. J. et al. Linear motifs in the C-terminus of D. melanogaster cryptochrome. Biochem. Biophys. Res. Commun. 355, 531–537 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Zito, K., Fetter, R. D., Goodman, C. S. & Isacoff, E. Y. Synaptic clustering of Fasciclin II and Shaker: essential targeting sequences and role of dig. Neuron 19, 1007–1016 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, U. et al. Synaptic targeting and localization of Discs-large is a stepwise process controlled by different domains of the protein. Curr. Biol. 10, 1108–1117 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Busza, A., Emery-Le, M., Rosbash, M. & Emery, P. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304, 1503–1506 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Xu, J. et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fogle, K. J. et al. Cryptochrome-mediated phototransduction by modulation of the potassium ion channel β-subunit redox sensor. Proc. Natl Acad. Sci. USA 112, 2245–2250 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pooam, M. et al. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. Planta 249, 319–332 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hammad, M. et al. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin. Photochem. Photobiol. Sci. 19, 341–352 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Netušil, R. et al. Cryptochrome-dependent magnetoreception in heteropteran insect continues even after 24 hours in darkness. J. Exp. Biol. 224, jeb243000 (2021).

    Article 

    Google Scholar
     

  • Toma, D. P., White, K. P., Hirsch, J. & Greenspan, R. J. Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nat. Genet. 31, 349–353 (2002).

  • Fedele, G., Green, E. W., Rosato, E. & Kyriacou, C. P. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat. Commun. 5, 4391 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Bae, J. E. et al. Positive geotactic behaviors induced by geomagnetic field in Drosophilia. Mol. Brain 9, 55 (2016).

    Article 

    Google Scholar
     

  • Oh, I. T. et al. Behavioral evidence for geomagnetic imprinting and transgenerational inheritance in fruit flies. Proc. Natl Acad. Sci. USA 117, 1216–1222 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kyriacou, C. P. & Rosato, E. Genetic analysis of cryptochrome in insect magnetosensitivity. Front. Physiol. 13, 928416 (2022).

    Article 

    Google Scholar
     

  • Dolezelova, E., Dolezel, D. & Hall, J. C. Rhythm defects caused by newly engineered null mutations in Drosophila’s cryptochrome gene. Genetics 177, 329–345 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Baines, R. A. & Bate, M. Electrophysiological development of central neurons in the Drosophila embryo. J. Neurosci. 18, 4673–4683 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Delfino, L. et al. Visualization of mutant aggregates from clock neurons by agarose gel electrophoresis (AGERA) in Drosophila melanogaster. Methods Mol. Biol. 2482, 373–383 (2022).

    Article 

    Google Scholar
     

  • Source link