May 6, 2024
The quantum twisting microscope – Nature

The quantum twisting microscope – Nature

  • Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 152–153, 17–26 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Bian, K. et al. Scanning probe microscopy. Nat. Rev. Methods Primers 1, 36 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eisenstein, J. P., Gramila, T. J., Pfeiffer, L. N. & West, K. W. Probing a two-dimensional Fermi surface by tunneling. Phys. Rev. B 44, 6511–6514 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murphy, S. Q., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Lifetime of two-dimensional electrons measured by tunneling spectroscopy. Phys. Rev. B 52, 14825–14828 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Auslaender, O. M. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fallahazad, B. et al. Gate-tunable resonant tunneling in double bilayer graphene heterostructures. Nano Lett. 15, 428–433 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wallbank, J. R. et al. Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. Science 353, 575–579 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jang, J. et al. Full momentum- and energy-resolved spectral function of a 2D electronic system. Science 358, 901–906 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prasad, N. et al. Quantum lifetime spectroscopy and magnetotunneling in double bilayer graphene heterostructures. Phys. Rev. Lett. 127, 117701 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, K. et al. Emergence of interlayer coherence in twist-controlled graphene double layers. Phys. Rev. Lett. 129, 187701 (2022).

  • Seo, Y. et al. Subband-resolved momentum-conserved resonant tunneling in monolayer graphene/h-BN/ABA-trilayer graphene small-twist-angle tunneling device. Appl. Phys. Lett. 120, 083102 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Koren, E. et al. Coherent commensurate electronic states at the interface between misoriented graphene layers. Nat. Nanotechnol. 11, 752–757 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chari, T., Ribeiro-Palau, R., Dean, C. R. & Shepard, K. Resistivity of rotated graphite–graphene contacts. Nano Lett. 16, 4477–4482 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 6, eabd3655 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, C. et al. In-situ twistable bilayer graphene. Sci. Rep. 12, 204 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bistritzer, R. & MacDonald, A. H. Transport between twisted graphene layers. Phys. Rev. B 81, 245412 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Angle-resolved photoemission spectroscopy. Nat. Rev. Methods Primers 2, 54 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Feenstra, R. M., Jena, D. & Gu, G. Single-particle tunneling in doped graphene-insulator-graphene junctions. J. Appl. Phys. 111, 043711 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Carr, S., Fang, S., Jarillo-Herrero, P. & Kaxiras, E. Pressure dependence of the magic twist angle in graphene superlattices. Phys. Rev. B 98, 085144 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chittari, B. L., Leconte, N., Javvaji, S. & Jung, J. Pressure induced compression of flatbands in twisted bilayer graphene. Electron. Struct. 1, 015001 (2018).

    Article 

    Google Scholar
     

  • Chebrolu, N. R., Chittari, B. L. & Jung, J. Flat bands in twisted double bilayer graphene. Phys. Rev. B 99, 235417 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ares, P. et al. Tunable graphene electronics with local ultrahigh pressure. Adv. Funct. Mater. 29, 1806715 (2019).

    Article 

    Google Scholar
     

  • Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yabuki, N. et al. Supercurrent in van der Waals Josephson junction. Nat. Commun. 7, 10616 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Farrar, L. S. et al. Superconducting quantum interference in twisted van der Waals heterostructures. Nano Lett. 21, 6725–6731 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, S. Y. F. et al. Emergent interfacial superconductivity between twisted cuprate superconductors. Preprint at https://arxiv.org/abs/2108.13455 (2021).

  • Source link