May 19, 2024
Extreme escalation of heat failure rates in ectotherms with global warming – Nature

Extreme escalation of heat failure rates in ectotherms with global warming – Nature

  • Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).

  • Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman and Hall, 1987).

  • Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Hofmann, G. E. & Todgham, A. E. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu. Rev. Physiol. 72, 127–145 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).

    PubMed 

    Google Scholar
     

  • Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).


    Google Scholar
     

  • Parratt, S. R. et al. Temperatures that sterilize males better match global species distributions than lethal temperatures. Nat. Clim. Change 11, 481–484 (2021).

    ADS 

    Google Scholar
     

  • Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    ADS 

    Google Scholar
     

  • Schmidt-Nielsen, K. Animal physiology: Adaptation and Environment 5th edn (Cambridge Univ. Press, 1997).

  • Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2014).

    ADS 

    Google Scholar
     

  • Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).


    Google Scholar
     

  • Hollingsworth, M. J. Temperature and length of life in Drosophila. Exp. Gerontol. 4, 49–55 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • Fry, F. E. J., Hart, J. S. & Walker, K. F. Lethal Temperature Relations for a Sample of Young Speckled Trout, Salvelinus fontinalis 9–35 (Univ. Toronto, 1946).

  • MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos. Trans. R. Soc. B 374, 20180548 (2019).


    Google Scholar
     

  • Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    PubMed 

    Google Scholar
     

  • Ørsted, M., Jørgensen, L. B. & Overgaard, J. Finding the right thermal limit: a framework to reconcile ecological, physiological, and methodological aspects of CTmax in ectotherms. J. Exp. Biol. 225, jeb244514 (2022).

  • Brown, J. H., Gillooly, J. F., Alle, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).


    Google Scholar
     

  • Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Jørgensen, L. B., Malte, H., Ørsted, M., Klahn, N. A. & Overgaard, J. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress. Sci. Rep. 11, 12840 (2021).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Rezende, E. L., Castañeda, L. E. & Santos, M. Tolerance landscapes in thermal ecology. Funct. Ecol. 28, 799–809 (2014).


    Google Scholar
     

  • Bowler, K. Heat death in poikilotherms: is there a common cause? J. Therm. Biol. 76, 77–79 (2018).

    PubMed 

    Google Scholar
     

  • Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Buckley, L. B., Huey, R. B. & Kingsolver, J. G. Asymmetry of thermal sensitivity and the thermal risk of climate change. Glob. Ecol. Biogeogr. 31, 2231–2244 (2022).

  • Overgaard, J., Kearney, M. R. & Hoffmann, A. A. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob. Change Biol. 20, 1738–1750 (2014).

    ADS 

    Google Scholar
     

  • Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).


    Google Scholar
     

  • Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol 54, 86–97 (2015).

    PubMed 

    Google Scholar
     

  • Stevenson, R. D. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126, 362–386 (1985).


    Google Scholar
     

  • Chen, I., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Buckley, L. B. & Kingsolver, J. G. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu. Rev. Ecol. Evol. Syst. 43, 205–226 (2012).


    Google Scholar
     

  • Roeder, K. A., Bujan, J., de Beurs, K. M., Weiser, M. D. & Kaspari, M. Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere 12, e03645 (2021).


    Google Scholar
     

  • Penick, C. A., Diamond, S. E., Sanders, N. J. & Dunn, R. R. Beyond thermal limits: comprehensive metrics of performance identify key axes of thermal adaptation in ants. Funct. Ecol. 31, 1091–1100 (2017).


    Google Scholar
     

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).


    Google Scholar
     

  • Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. 19, 1372–1385 (2016).

    PubMed 

    Google Scholar
     

  • Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals the scale of prediction. Science 320, 1296–1297 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).


    Google Scholar
     

  • Kingsolver, J. G. & Woods, H. A. Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am. Nat. 187, 283–294 (2016).

    PubMed 

    Google Scholar
     

  • Kingsolver, J. G., Higgins, J. K. & Augustine, K. E. Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects. J. Exp. Biol. 218, 2218–2225 (2015).

    PubMed 

    Google Scholar
     

  • Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).

    PubMed 

    Google Scholar
     

  • Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).


    Google Scholar
     

  • Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tollefson, J. How hot will Earth get by 2100? Nature 580, 443–445 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).


    Google Scholar
     

  • Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).


    Google Scholar
     

  • Jørgensen, L. B., Ørsted, M., Malte, H., Wang, T. & Overgaard, J. Data from: Extreme escalation of heat failure rates in ectotherms with global warming. Zenodo https://doi.org/10.5281/zenodo.6979789 (2022).

  • Grove, T. J., McFadden, L. A., Chase, P. B. & Moerland, T. S. Effects of temperature, ionic strength and pH on the function of skeletal muscle myosin from a eurythermal fish, Fundulus heteroclitus. J. Muscle Res. Cell Motil. 26, 191–197 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Doudoroff, P. The resistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Bull. 88, 194–206 (1945).


    Google Scholar
     

  • Sirikharin, R., Söderhäll, I. & Söderhäll, K. Characterization of a cold-active transglutaminase from a crayfish, Pacifastacus leniusculus. Fish Shellfish Immunol. 80, 546–549 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Becker, C. D. & Genoway, R. G. Resistance of crayfish to acute thermal shock: preliminary studies. in Proc. Thermal Ecology NTIS Conf. 730505 (eds Gibbons, J. W. & Sharitz, R. R.) 146–150 (NTIS, 1974).

  • Widdows, J. Effect of temperature and food on the heart beat, ventilation rate and oxygen uptake of Mytilus edulis. Mar. Biol. 20, 269–276 (1973).


    Google Scholar
     

  • Wallis, R. L. Thermal tolerance of Mytilus edulis of eastern Australia. Mar. Biol. 30, 183–191 (1975).


    Google Scholar
     

  • Gray, J. The mechanism of ciliary movement. III. The effect of temperature. Proc. R. Soc. B 95, 6–15 (1923).

    CAS 
    ADS 

    Google Scholar
     

  • Shertzer, R. H., Hart, R. G. & Pavlick, F. M. Thermal acclimation in selected tissues of the leopard frog Rana pipiens. Comp. Biochem. Physiol. A 51, 327–334 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • Orr, P. R. Heat death. II. Differential response of entire animal (Rana pipiens) and several organ systems. Physiol. Zool. 28, 294–302 (1955).


    Google Scholar
     

  • Lighton, J. R. B. & Duncan, F. D. Energy cost of locomotion: validation of laboratory data by in situ respirometry. Ecology 83, 3517–3522 (2002).


    Google Scholar
     

  • Heatwole, H. & Harrington, S. Heat tolerances of some ants and beetles from the pre-Saharan steppe of Tunisia. J. Arid Environ. 16, 69–77 (1989).

    ADS 

    Google Scholar
     

  • Source link