May 9, 2024
Intrinsic glassy-metallic transport in an amorphous coordination polymer – Nature

Intrinsic glassy-metallic transport in an amorphous coordination polymer – Nature

  • Heeger, A. J. Nobel Lecture: Semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev. Mod. Phys. 73, 681–700 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Bryce, M. R. Recent progress on conducting organic charge-transfer salts. Chem. Soc. Rev. 20, 355 (1991).

    CAS 

    Google Scholar
     

  • Valade, L., de Caro, D., Faulmann, C. & Jacob, K. TTF[Ni(dmit)2]2: from single-crystals to thin layers, nanowires, and nanoparticles. Coord. Chem. Rev. 308, 433–444 (2016).

    CAS 

    Google Scholar
     

  • Xie, L. S., Skorupskii, G. & Dincă, M. Electrically conductive metal–organic frameworks. Chem. Rev. 120, 8536–8580 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, X. & Facchetti, A. The journey of conducting polymers from discovery to application. Nat. Mater. 19, 922–928 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, A., Fujiwara, E. & Kobayashi, H. Single-component molecular metals with extended-TTF dithiolate ligands. Chem. Rev. 104, 5243–5264 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Kobayashi, Y., Terauchi, T., Sumi, S. & Matsushita, Y. Carrier generation and electronic properties of a single-component pure organic metal. Nat. Mater. 16, 109–114 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Joo, Y., Agarkar, V., Sung, S. H., Savoie, B. M. & Boudouris, B. W. A nonconjugated radical polymer glass with high electrical conductivity. Science 359, 1391–1395 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Plummer, J. Is metallic glass poised to come of age? Nat. Mater. 14, 553–555 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Hirata, A. et al. Geometric frustration of icosahedron in metallic glasses. Science 341, 376–379 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eisenberg, R. & Gray, H. B. Noninnocence in metal complexes: a dithiolene dawn. Inorg. Chem. 50, 9741–9751 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • McCullough, R. D. et al. Building block ligands for new molecular conductors: homobimetallic tetrathiafulvalene tetrathiolates and metal diselenolenes and ditellurolenes. J. Mater. Chem. 5, 1581 (1995).

    CAS 

    Google Scholar
     

  • Xie, J. et al. Redox, transmetalation, and stacking properties of tetrathiafulvalene-2,3,6,7-tetrathiolate bridged tin, nickel, and palladium compounds. Chem. Sci. 11, 1066–1078 (2020).

    CAS 

    Google Scholar
     

  • de Caro, D. et al. Metallic Thin films of TTF[Ni(dmit)2]2 by electrodeposition on (001)-oriented silicon substrates. Adv. Mater. 16, 835–838 (2004).


    Google Scholar
     

  • Scott, R. A. Comparative X-ray absorption spectroscopic structural characterization of nickel metalloenzyme active sites. Phys. B Condens. Matter 158, 84–86 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • Holder, C. F. & Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359–7365 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, H., Okano, Y., Kobayashi, H., Suzuki, W. & Kobayashi, A. A three-dimensional synthetic metallic crystal composed of single-component molecules. Science 291, 285–287 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vogt, T. et al. A LAXS (large sngle X-ray dcattering) and EXAFS (extended X-ray absorption fine structure) investigation of conductive amorphous Nickel tetrathiolato polymers. J. Am. Chem. Soc. 110, 1833–1840 (1988).

    CAS 

    Google Scholar
     

  • Liu, Z. et al. Controlling the thermoelectric properties of organometallic coordination polymers via ligand design. Adv. Funct. Mater. 30, 2003106 (2020).

  • Choy, C. L., Leung, W. P. & Ng, Y. K. Thermal conductivity of metallic glasses. J. Appl. Phys. 66, 5335–5339 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • Sun, L. et al. A microporous and naturally nanostructured thermoelectric metal-organic gramework with ultralow thermal vonductivity. Joule 1, 168–177 (2017).

    CAS 

    Google Scholar
     

  • Craven, G. T. & Nitzan, A. Wiedemann–Franz Law for molecular hopping transport. Nano Lett. 20, 989–993 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dou, J. H. et al. Signature of metallic behavior in the metal-organic frameworks M3(hexaiminobenzene)2 (M = Ni, Cu). J. Am. Chem. Soc. 139, 13608–13611 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Kaiser, A. B. Electronic transport properties of conducting polymers and carbon nanotubes. Reports Prog. Phys. 64, 1–49 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Halim, J. et al. Variable range hopping and thermally activated transport in molybdenum-based MXenes. Phys. Rev. B 98, 104202 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Lan, X. et al. Quantum dot solids showing state-resolved band-like transport. Nat. Mater. 19, 323–329 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, S. D., Dylla, M. & Snyder, G. J. Thermopower-conductivity relation for distinguishing transport mechanisms: polaron hopping in CeO2 and band conduction in SrTiO3. Phys. Rev. B 97, 235201 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Heeger, A. J. Disorder-induced metal-insulator transition in conducting polymers. J. Supercond. 14, 261–268 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Synthesis of a copper 1,3,5-triamino-2,4,6-benzenetriol metal–organic gramework. J. Am. Chem. Soc. 142, 18346–18354 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, K. et al. Metallic transport in polyaniline. Nature 441, 65–68 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazziotti, D. A. Large-scale semidefinite programming for many-electron quantum mechanics. Phys. Rev. Lett. 106, 083001 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • He, T., Stolte, M. & Würthner, F. Air-stable n-channel organic single crystal field-effect transistors based on microribbons of core-chlorinated naphthalene diimide. Adv. Mater. 25, 6951–6955 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. et al. Superconductivity in a copper(II)-based coordination polymer with perfect Kagome structure. Angew. Chemie Int. Ed. 57, 146–150 (2018).

    CAS 

    Google Scholar
     

  • Gill, N. S. & Nyholm, R. S. Complex halides of the transition metals. Part I. Tetrahedral nickel complexes. J. Chem. Soc. 1959, 3997–4007 (1959).

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Rehr, J. J. & Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    CAS 

    Google Scholar
     

  • Yang, X., Juhas, P., Farrow, C. L. & Billinge, S. J. L. XPDFsuite: an end-to-end software solution for high throughput pair distribution function transformation, visualization and analysis. https://arxiv.org/abs/1402.3163 (2014).

  • Morrison, C., Sun, H., Yao, Y., Loomis, R. A. & Buhro, W. E. Methods for the ICP-OES analysis of semiconductor materials. Chem. Mater. 32, 1760–1768 (2020).

    CAS 

    Google Scholar
     

  • Ma, T., Dong, B. X., Grocke, G. L., Strzalka, J. & Patel, S. N. Leveraging sequential doping of semiconducting polymers to enable functionally graded materials for organic thermoelectrics. Macromolecules 53, 2882–2892 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    PubMed 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Prandini, G., Marrazzo, A., Castelli, I. E., Mounet, N. & Marzari, N. Precision and efficiency in solid-state pseudopotential calculations. NPJ Comput. Mater. 4, 72 (2018).

    ADS 

    Google Scholar
     

  • Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    PubMed 

    Google Scholar
     

  • Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Source link