May 28, 2024
Femtosecond laser writing of lithium niobate ferroelectric nanodomains – Nature

Femtosecond laser writing of lithium niobate ferroelectric nanodomains – Nature

  • Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photon. 13, 242–352 (2021).

    Article 

    Google Scholar
     

  • Sun, D. H. et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl. 9, 197 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He, M. B. et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–365 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Li, M. X. et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 11, 4123 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138–1144 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Pohl, D. et al. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photon. 14, 24–29 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Bartnick, M. et al. Cryogenic second-harmonic generation in periodically poled lithium niobate waveguides. Phys. Rev. Appl. 15, 024028 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Zhu, S. N., Zhu, Y. Y. & Ming, N. B. Quasi–phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ellenbogen, T., Noa, V. B., Ayelet, G. P. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photon. 3, 395–398 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yuan, S. et al. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett. 127, 153901 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yudistira, D., Benchabane, S., Janner, D. & Pruneri, V. Diffraction less and strongly confined surface acoustic waves in domain inverted LiNbO3 superlattices. Appl. Phys. Lett. 98, 233504 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Yin, R. C., Yu, S. Y., He, C., Lu, M. H. & Chen, Y. F. Bulk acoustic wave delay line in acoustic superlattice. Appl. Phys. Lett. 97, 092905 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Yudistira, D., Benchabane, S., Janner, D. & Pruneri, V. Surface acoustic wave generation in zx-cut LiNbO3 superlattices using coplanar electrodes. Appl. Phys. Lett. 95, 052901 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Lu, Y. Q. et al. Optical properties of an ionic-type phononic crystal. Science 284, 1822–1824 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chai, X. et al. Nonvolatile ferroelectric field-effect transistors. Nat. Commun. 11, 2811 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meier, D. & Selbach, S. M. Ferroelectric domain walls for nanotechnology. Nat. Rev. Mater. 7, 157–173 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Canalias, C. & Pasiskevicius, V. Mirrorless optical parametric oscillator. Nat. Photon. 1, 459–462 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jia, K. P. et al. Midinfrared tunable laser with noncritical frequency matching in box resonator geometry. Phys. Rev. Lett. 127, 213902 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, 1700512 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Marpaung, D., Yao, J. P. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jin, H. et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solntsev, A. S. et al. Generation of nonclassical biphoton states through cascaded quantum walks on a nonlinear chip. Phys. Rev. X 4, 031007 (2014).


    Google Scholar
     

  • Saravi, S., Pertsch, T. & Setzpfandt, F. Lithium niobate on insulator: An emerging platform for integrated quantum photonics. Adv. Opt. Mater. 9, 2100789 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, J., Ma, C., Rusing, M. & Mookherjea, S. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett. 124, 163603 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lehr, D. et al. Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett. 15, 1025–1030 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, J. et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 23, 23072–23078 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shur, V. Y., Akhmatkhanov, A. R. & Baturin, I. S. Micro- and nano-domain engineering in lithium niobate. Appl. Phys. Lett. 2, 040604 (2015).


    Google Scholar
     

  • Ying, C. Y. J. et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photonics Rev. 6, 526–548 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sun, J., Hao, Y. X., Zhang, L., Xu, J. J. & Zhu, S. N. Brief review of lithium niobate crystal and its applications. J. Synth. Cryst. 49, 947–964 (2020).

    CAS 

    Google Scholar
     

  • Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Cao, B. et al. Efficient generation of ultra-broadband parametric fluorescence using chirped quasi-phase-matched waveguide devices. Opt. Express 29, 21615–21628 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yudistira, D., Janner, D., Benchabane, S. & Pruneri, V. Low power consumption integrated acoustooptic filter in domain inverted LiNbO3 superlattice. Opt. Express 18, 27181–27190 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rosenman, G., Urenski, P., Agronin, A., Rosenwaks, Y. & Molotskii, M. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Appl. Phys. Lett. 82, 103–105 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Yamada, M. & Kishima, K. Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature. Electron. Lett. 27, 828–829 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shur, V. Y. Domain nanotechnology in ferroelectrics: nano-domain engineering in lithium niobate crystals. Ferroelectrics 373, 1–10 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Shur, V. Y. et al. Self-assembled shape evolution of the domain wall and formation of nanodomain wall traces induced by multiple IR laser pulse irradiation in lithium niobate. J. Appl. Phys. 127, 094103 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Shur, V. Y. et al. Dimensionality increase of ferroelectric domain shape by pulse laser irradiation. Acta Mater. 219, 117270 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rodenas, A. et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat. Photon. 13, 105–109 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2, 219–225 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Huang, X. J. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photon. 14, 82–88 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Yang, W., Kazansky, P. G. & Svirko, Y. P. Non-reciprocal ultrafast laser writing. Nat. Photon. 2, 99–104 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wei, D. Z. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photon. 12, 596–601 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Xu, T. X. et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photon. 12, 591–595 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chen, X. et al. Ferroelectric domain engineering by focused infrared femtosecond pulses. Appl. Phys. Lett. 107, 141102 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Imbrock, J., Hanafi, H., Ayoub, M. & Denz, C. Local domain inversion in MgO-doped lithium niobate by pyroelectric field-assisted femtosecond laser lithography. Appl. Phys. Lett. 113, 252901 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Sheng, Y., Zhu, S. N., Xiao, M. & Krolikowski, W. Nonlinear photonic crystals: from 2D to 3D. Optica 8, 372–381 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Zhu, B., Liu, H., Chen, Y. & Chen, X. High conversion efficiency second-harmonic beam shaping via amplitude-type nonlinear photonic crystals. Opt. Lett. 45, 220–223 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Steigerwald, H., Cube, F. V., Luedtke, F., Dierolf, V. & Buse, K. Influence of heat and UV light on the coercive field of lithium niobate crystals. Appl. Phys. B 101, 535–539 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Saltiel, S. M. et al. Nonlinear diffraction from a virtual beam. Phys. Rev. Lett. 104, 083902 (2010).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Bhatt, R. et al. Studies on nonlinear optical properties of ferroelectric MgO-LiNbO3 single crystals. Ferroelectrics 323, 165–169 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Reddy, J. N. B., Elizabeth, S., Bhat, H. L., Venkatram, N. & Rao, D. N. Influence of non-stoichiometric defects on nonlinear absorption and refraction in Nd:Zn co-doped lithium niobate. Opt. Mater. 31, 1022–1026 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Maekawa, S. et al. in Physics of Transition Metal Oxides (eds Cardona, M. et al.) 323–331 (Springer, 2004).

  • Ashcroft, N. W. & Mermin, N. D. in Solid State Physics (ed. Crane, D. G.) 253–258 (Harcourt College, 1976).

  • Kosorotov, V. F., Kremenchugskij, L. S., Levash, L. V. & Shchedrina, L. V. Tertiary pyroelectric effect in lithium niobate and lithium tantalate crystals. Ferroelectrics 70, 27–37 (1986).

    CAS 
    Article 

    Google Scholar
     

  • Bo, H. F. et al. Temperature-dependent ferroelectric properties of near stoichiometric lithium niobate single crystal. Appl. Phys. A 124, 691 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Fridkin, V. M. & Ducharme, S. General features of the intrinsic ferroelectric coercive field. Phys. Solid State 43, 1320–1324 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ishizuki, H., Shoji, I. & Taira, T. Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature. Appl. Phys. Lett. 82, 4062–4064 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lee, W. H. Binary computer-generated holograms. Appl. Opt. 18, 3661–3669 (1979).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shapira, A., Shiloh, R., Juwiler, I. & Arie, A. Two-dimensional nonlinear beam shaping. Opt. Lett. 37, 2136–2138 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Kogelnik, H. & Li, T. Laser beams and resonators. Appl. Opt. 5, 1550–1567 (1966).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Soergel, E. Piezoresponse force microscopy (PFM). J. Phys. D 44, 464003 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Sheng, Y. et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt. Express 18, 16539–16545 (2010).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Huang, X. Y. et al. Second-harmonic interference imaging of ferroelectric domains through a scanning microscope. J. Phys. D 50, 485105 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, Y. Y., Chen, Y. F., Zhu, S. N., Qin, Y. Q. & Ming, N. B. Acoustic superlattices and ultrasonic waves excited by crossed-field scheme. Mater. Lett. 28, 503–505 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Anhorn, M., Engan, H. E. & Ronnekleiv, A. New saw velocity measurements on y-cut LiNbO3. In IEEE 1987 Ultrasonics Symposium (ed. McAvoy, B. R.) 279–284 (IEEE, 1987).

  • Source link