May 1, 2024
Galeaspid anatomy and the origin of vertebrate paired appendages – Nature

Galeaspid anatomy and the origin of vertebrate paired appendages – Nature

  • Larouche, O., Zelditch, M. L. & Cloutier, R. Fin modules: an evolutionary perspective on appendage disparity in basal vertebrates. BMC Biol. 15, 32 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tulenko, F. J. et al. Body wall development in lamprey and a new perspective on the origin of vertebrate paired fins. Proc. Natl Acad. Sci. USA 110, 11899–11904 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Donoghue, P. C. J. & Keating, J. N. Early vertebrate evolution. Palaeontology 57, 879–893 (2014).

    Article 

    Google Scholar
     

  • Wilson, M. V. H., Hanke, G. F. & Märss, T. in Major Transitions in Vertebrate Evolution (eds Anderson, J. S. & Sues, H.-D.) 122–149 (Indiana Univ. Press, 2007).

  • Coates, M. I. The origin of vertebrate limbs. Development 1994, 169–180 (1994).

    Article 

    Google Scholar
     

  • Mivart, S. G. Notes on the fins of elasmobranchs, with considerations on the nature and homologues of vertebrate limbs. Trans. Zool. Soc. Lond. 10, 439–484 (1879).

    Article 

    Google Scholar
     

  • Thacher, J. K. Median and Paired Fins: A Contribution to the History of Vertebrate Limbs Vol. 3 (Connecticut Academy of Arts and Sciences, 1877).

  • Balfour, F. M. On the development of the skeleton of the paired fins of Elasmobranchii, considered in relation to its bearings on the nature of the limbs of the vertebrata. Proc. Zool. Soc. Lond. 49, 656–670 (1881).

    Article 

    Google Scholar
     

  • Goodrich, E. S. Notes on the development, structure, and origin of the median and paired fins of fish. Q. J. Microsc. Sci. 50, 333–376 (1906).


    Google Scholar
     

  • Westoll, T. S. (ed.) in Studies on Fossil Vertebrates 180–211 (Athlone, 1958).

  • Gai, Z. K., Donoghue, P. C. J., Zhu, M., Janvier, P. & Stampanoni, M. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 476, 324–327 (2011).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Liu, Y. H. Lower Devonian agnathans of Yunnan and Sichuan. Vert. Palasiat. 13, 202–216 (1975).


    Google Scholar
     

  • Pan, J. New Galeapsids (Agnatha) from the Silurian and Devonian of China (Geological Publishing House, 1992).

  • Pan, J. & Chen, L. Z. Geraspididae, a new family of Polybranchiaspidida (Agnatha) from Silurian of northern Anhui. Vert. Palasiat. 31, 225–230 (1993).


    Google Scholar
     

  • Stensiö, E. A. A new anaspid from the Upper Devonian of Scaumenac Bay in Canada, with remarks on other anaspids. K. Svenska Vet. Akad. Handl. 18, 1–25 (1939).


    Google Scholar
     

  • Ritchie, A. New light on the morphology of the Norwegian Anaspida. Skr. Norske Vidensk. Akad. Oslo 14, 1–35 (1964).


    Google Scholar
     

  • Sansom, R. S., Freedman, K., Gabbott, S. E., Aldridge, R. J. & Purnell, M. A. Taphonomy and affinity of an enigmatic Silurian vertebrate, Jamoytius kerwoodi White. Palaeontology 53, 1393–1409 (2010).

    Article 

    Google Scholar
     

  • Sansom, R. S., Gabbott, S. E. & Purnell, M. A. Unusual anal fin in a Devonian jawless vertebrate reveals complex origins of paired appendages. Biol. Lett. 9, 20130002 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stensiö, E. A. The Cephalaspids of Great Britain (British Museum, 1932).

  • Heintz, A. Cephalaspida from Downtonian of Norway. Skr. Norske Vidensk. Akad. Oslo 1939, 1–119 (1939).


    Google Scholar
     

  • Ritchie, A. Ateleaspis tessellata Traquair, a non‐cornuate cephalaspid from the Upper Silurian of Scotland. Zool. J. Linn. Soc. 47, 69–81 (1967).

    Article 

    Google Scholar
     

  • Coates, M. I. in Developmental Patterning of the Vertebrate Limb (eds Hinchliffe, J. et al.) 325–337 (Plenum, 1991).

  • Larouche, O., Zelditch, M. L. & Cloutier, R. A critical appraisal of appendage disparity and homology in fishes. Fish Fish. 20, 1138–1175 (2019).

    Article 

    Google Scholar
     

  • Keating, J. N. & Donoghue, P. C. J. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton. Proc. R. Soc. B 283, 20152917 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miyashita, T., Gess, R. W., Tietjen, K. & Coates, M. I. Non-ammocoete larvae of Palaeozoic stem lampreys. Nature 591, 408–412 (2021).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Gans, C. & Northcutt, R. G. Neural crest and the origin of the vertebrates: a new head. Science 220, 268–274 (1983).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Northcutt, R. G. & Gans, C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q. Rev. Biol. 58, 1–28 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Coates, M. Hox genes, fin folds and symmetry. Nature 364, 195–196 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Coates, M. I. The evolution of paired fins. Theory Biosci. 122, 266–287 (2003).

    Article 

    Google Scholar
     

  • Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Pieretti, J. et al. Organogenesis in deep time: a problem in genomics, development, and paleontology. Proc. Natl Acad. Sci. USA 112, 4871–4876 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • Yonei‐Tamura, S. et al. Competent stripes for diverse positions of limbs/fins in gnathostome embryos. Evol. Dev. 10, 737–745 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Romer, A. S. Vertebrate evolution. Copeia 1962, 223–227 (1962).

    Article 

    Google Scholar
     

  • Johanson, Z. Evolution of paired fins and the lateral somitic frontier. J. Exp. Zool. 314B, 347–352 (2010).

    Article 

    Google Scholar
     

  • Sordino, P., van der Hoeven, F. & Duboule, D. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 375, 678–681 (1995).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Neumann, C. J., Grandel, H., Gaffield, W., Schulte-Merker, S. & Nüsslein-Volhard, C. Transient establishment of anteroposterior polarity in the zebrafish pectoral fin bud in the absence of sonic hedgehog activity. Development 126, 4817–4826 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahn, D. G., Kourakis, M. J., Rohde, L. A., Silver, L. M. & Ho, R. K. T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature 417, 754–758 (2002).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Freitas, R., Zhang, G. J. & Cohn, M. J. Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature 442, 1033–1037 (2006).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Dahn, R. D., Davis, M. C., Pappano, W. N. & Shubin, N. H. Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning. Nature 445, 311–314 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • Letelier, J. et al. A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat. Genet. 50, 504–509 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abe, G. & Ota, K. G. Evolutionary developmental transition from median to paired morphology of vertebrate fins: perspectives from twin-tail goldfish. Dev. Biol. 427, 251–257 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Freitas, R., Gomez-Skarmeta, J. L. & Rodrigues, P. N. New frontiers in the evolution of fin development. J. Exp. Zool. 322, 540–552 (2014).

    Article 

    Google Scholar
     

  • Rong, J. et al. Silurian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 89–111 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar
     

  • Wang, Y. et al. On the late Silurian stratigraphy of the Zhangjiajie area, Hunan province, with a discussion on age of the Xiaoxi Formation. J. Strat. 34, 113–126 (2010).


    Google Scholar
     

  • Wang, Y. et al. Discovery of the late Silurian Xiaoxi Formation in the Xiushan area, Chongqing city, China, and the revision of the Huixingshao Formation. J. Strat. 35, 113–121 (2011).


    Google Scholar
     

  • Zhao, W.-J. & Zhu, M. Siluro-Devonian vertebrate biostratigraphy and biogeography of China. Palaeoworld 19, 4–26 (2010).

    Article 

    Google Scholar
     

  • Zhao, W. et al. A review of Silurian fishes from north-western Hunan, China and related biostratigraphy. Acta Geol. Pol. 68, 475–486 (2018).


    Google Scholar
     

  • Rahman, I. A. & Lautenschlager, S. Applications of three-dimensional box modeling to paleontological functional analysis. Palaeontol. Soc. Pap. 22, 119–132 (2016).

    Article 

    Google Scholar
     

  • Videler, J. J. Fish Swimming (Springer Science & Business Media, 2012).

  • Lowndes, A. G. XXXII.—Density of fishes: some notes on the swimming of fish to be correlated with density, sinking factor and load carried. Ann. Mag. Nat. Hist. 8, 241–256 (1955).

    Article 

    Google Scholar
     

  • Botella, H. Microictiolitos del Devónico Inferior de Nigüella (Cordillera Ibérica); Consideraciones Paleobiológicas e Hidrodinámicas de Condrictios y Agnatos Primitivos (Univ. València, 2005).

  • Randle, E. & Sansom, R. S. Phylogenetic relationships of the ‘higher heterostracans’ (Heterostraci: Pteraspidiformes and Cyathaspididae), extinct jawless vertebrates. Zool. J. Linn. Soc. 181, 910–926 (2017).

    Article 

    Google Scholar
     

  • Wilson, M. V. H. & Märss, T. Thelodont phylogeny revisited, with inclusion of key scale-based taxa. Est. J. Earth Sci. 58, 297–310 (2009).

    Article 

    Google Scholar
     

  • Sansom, R. S. Phylogeny, classification and character polarity of the Osteostraci (Vertebrata). J. Syst. Palaeontol. 7, 95–115 (2009).

    Article 

    Google Scholar
     

  • Lu, J., Giles, S., Friedman, M., den Blaauwen, J. L. & Zhu, M. The oldest actinopterygian highlights the cryptic early history of the hyperdiverse ray-finned fishes. Curr. Biol. 26, 1602–1608 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dornburg, A., Townsend, J. P., Friedman, M. & Near, T. J. Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evol. Biol. 14, 169 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Delsuc, F. et al. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 16, 39 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

    Article 

    Google Scholar
     

  • Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bell, M. A. & Lloyd, G. T. strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence. Paleontology 58, 379–389 (2015).

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar
     

  • Source link